Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bonifacio Dewasse is active.

Publication


Featured researches published by Bonifacio Dewasse.


Antimicrobial Agents and Chemotherapy | 2000

In vitro development of resistance to telithromycin (HMR 3647), four macrolides, clindamycin, and pristinamycin in Streptococcus pneumoniae.

Todd A. Davies; Bonifacio Dewasse; Michael R. Jacobs; Peter C. Appelbaum

ABSTRACT The ability of 50 sequential subcultures in subinhibitory concentrations of telithromycin (HMR 3647), azithromycin, clarithromycin, erythromycin A, roxithromycin, clindamycin, and pristinamycin to select for resistance was studied in five macrolide-susceptible and six macrolide-resistant pneumococci containing mefE or ermB. Telithromycin selected for resistance less often than the other drugs.


Antimicrobial Agents and Chemotherapy | 1999

In Vitro Development of Resistance to Five Quinolones and Amoxicillin-Clavulanate in Streptococcus pneumoniae

Todd A. Davies; Glenn A. Pankuch; Bonifacio Dewasse; Michael R. Jacobs; Peter C. Appelbaum

ABSTRACT The ability of 50 sequential subcultures in subinhibitory concentrations of ciprofloxacin, levofloxacin, grepafloxacin, sparfloxacin, trovafloxacin, and amoxicillin-clavulanate to select for resistance was studied for six penicillin-susceptible and four penicillin-intermediate pneumococci. Subculturing in ciprofloxacin, grepafloxacin, levofloxacin, and sparfloxacin led to selection of mutants requiring increased MICs for all 10 strains, with MICs rising from (i) 0.5 to 4.0 to (ii) 4.0 to 32.0 μg/ml after 7 to 12 passages for ciprofloxacin, from (i) 0.06 to 0.25 to (ii) 0.5 to 8.0 μg/ml after 5 to 23 passages for grepafloxacin, from (i) 0.5 to 1.0 to (ii) 4.0 to 64 μg/ml after 14 to 49 passages for levofloxacin, and from (i) 0.125 to 0.25 to (ii) 1.0 to 16.0 μg/ml after 8 to 26 passages for sparfloxacin. Subculturing in trovafloxacin led to increased MICs for eight strains, with MICs rising from (i) 0.06 to 0.125 to (ii) 0.5 to 8.0 μg/ml after 6 to 28 passages. Subculturing in amoxicillin-clavulanate led to raised MICs for only one strain, with the MIC rising from 0.015 to 0.125 μg/ml after 24 passages. Double mutations in both ParC and GyrA led to high-level quinolone resistance when ParC mutations were at S79. Trovafloxacin MICs were 1 to 2 μg/ml in double mutants with ParC mutations at positions other than S79 (e.g., D83). Mutations in ParE (at D435, R447, and E474) and GyrB (at S405, D406, and D435) were found in four and six mutants, respectively. In the presence of reserpine, 29 mutants had lower ciprofloxacin MICs (2 to 16 times lower), 8 mutants had lower levofloxacin MICs (2 times), and one mutant had a lower trovafloxacin MIC (2 times), suggesting the involvement of an efflux mechanism. In contrast to the case for quinolones, subculturing in the presence of amoxicillin-clavulanate did not select for resistance to this drug.


Antimicrobial Agents and Chemotherapy | 2005

Antipneumococcal Activity of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin

Klaudia Kosowska; Gengrong Lin; Catherine Clark; Kim Credito; Pamela McGhee; Bonifacio Dewasse; Bülent Bozdogan; Stuart Shapiro; Peter C. Appelbaum

ABSTRACT Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC50 and MIC90 values (μg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1× and 2× the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2× the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2× the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.


Antimicrobial Agents and Chemotherapy | 2009

Activity of Telavancin against Staphylococci and Enterococci Determined by MIC and Resistance Selection Studies

Klaudia Kosowska-Shick; Catherine Clark; Glenn A. Pankuch; Pamela McGhee; Bonifacio Dewasse; Linda Beachel; Peter C. Appelbaum

ABSTRACT This study used CLSI broth microdilution to test the activity of telavancin and comparator antimicrobial agents against 67 methicillin (meticillin)-resistant Staphylococcus aureus (MRSA) isolates. Twenty-six vancomycin-intermediate S. aureus (VISA) strains were among the isolates tested; all strains were susceptible to telavancin at ≤1 μg/ml, whereas 12/26 (46%) of these isolates were nonsusceptible to daptomycin at the same concentration. All strains were susceptible to quinupristin-dalfopristin, while resistance was found to all other drugs tested. Telavancin demonstrated potent activity against all vancomycin-susceptible isolates as well as against heterogeneously VISA and VISA resistance phenotypes. In multistep resistance selection studies, telavancin yielded one stable mutant after 43 days in one MRSA strain out of the 10 MRSA strains tested with the MIC rising eightfold from 0.25 μg/ml (parent) to 2 μg/ml. MICs for this clone did not increase further when passages were continued for the maximum 50 days. In contrast, daptomycin selected stable resistant clones (MIC increase of >4×) after 14 to 35 days in 4 of 10 MRSA strains with MICs increasing from 1 to 2 μg/ml (parents) to 4 to 8 μg/ml (resistant clones). Sequencing analysis of daptomycin resistance determinants revealed point mutations in the mprF genes of all four stable daptomycin-resistant clones. Teicoplanin gave rise to resistant clones after 14 to 21 days in 2 of 10 MRSA strains with MICs rising from 1 to 2 μg/ml (parents) to 4 to 16 μg/ml (stable resistant clones). Linezolid selected stable resistant clones after 22 to 48 days in 2 of 10 MRSA strains with MICs rising from 2 to 4 μg/ml (parents) to 32 μg/ml (resistant clones). Vancomycin yielded no resistant clones in 10 MRSA strains tested; however, MICs increased two- to fourfold from 1 to 8 μg/ml to 2 to 16 μg/ml after 50 days. No cross-resistance was found with any clone/antimicrobial combination. The two enterococci developed resistance to daptomycin, and one developed resistance to linezolid. Single-step mutation frequencies for telavancin (<4.0 × 10−11 to <2.9 × 10−10 at 2× MIC) were lower than the spontaneous mutation frequencies obtained with the comparators.


Antimicrobial Agents and Chemotherapy | 2006

Single- and Multistep Resistance Selection Studies on the Activity of Retapamulin Compared to Other Agents against Staphylococcus aureus and Streptococcus pyogenes

Klaudia Kosowska-Shick; Catherine Clark; Kim Credito; Pamela McGhee; Bonifacio Dewasse; Tatiana Bogdanovich; Peter C. Appelbaum

ABSTRACT Retapamulin had the lowest rate of spontaneous mutations by single-step passaging and the lowest parent and selected mutant MICs by multistep passaging among all drugs tested for all Staphylococcus aureus strains and three Streptococcus pyogenes strains which yielded resistant clones. Retapamulin has a low potential for resistance selection in S. pyogenes, with a slow and gradual propensity for resistance development in S. aureus.


Antimicrobial Agents and Chemotherapy | 2010

In Vitro Activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with Defined Macrolide Resistance Mechanisms

Pamela McGhee; Catherine Clark; Klaudia Kosowska-Shick; Kensuke Nagai; Bonifacio Dewasse; Linda Beachel; Peter C. Appelbaum

ABSTRACT CEM-101 had MIC ranges of 0.002 to 0.016 μg/ml against macrolide-susceptible pneumococci and 0.004 to 1 μg/ml against macrolide-resistant phenotypes. Only 3 strains with erm(B), with or without mef(A), had CEM-101 MICs of 1 μg/ml, and 218/221 strains had CEM-101 MICs of ≤0.5 μg/ml. CEM-101 MICs were as much as 4-fold lower than telithromycin MICs against all strains. For Streptococcus pyogenes, CEM-101 MICs ranged from 0.008 to 0.03 μg/ml against macrolide-susceptible strains and from 0.015 to 1 μg/ml against macrolide-resistant strains. Against erm(B) strains, erythromycin, azithromycin, and clarithromycin MICs were 32 to >64 μg/ml, while 17/19 strains had telithromycin MICs of 4 to 16 μg/ml; CEM-101 MICs were 0.015 to 1 μg/ml. By comparison, erm(A) and mef(A) strains had CEM-101 MICs of 0.015 to 0.5 μg/ml, clindamycin and telithromycin MICs of ≤1 μg/ml, and erythromycin, azithromycin, and clarithromycin MICs of 0.5 to >64 μg/ml. Pneumococcal multistep resistance studies showed that although CEM-101 yielded clones with higher MICs for all eight strains tested, seven of eight strains had clones with CEM-101 MICs that rose from 0.004 to 0.03 μg/ml (parental strains) to 0.06 to 0.5 μg/ml (resistant clones); for only one erm(B) mef(A) strain with a parental MIC of 1 μg/ml was there a resistant clone with a MIC of 32 μg/ml, with no detectable mutations in the L4, L22, or 23S rRNA sequence. Among two of five S. pyogenes strains tested, CEM-101 MICs rose from 0.03 to 0.25 μg/ml, and only for the one strain with erm(B) did CEM-101 MICs rise from 1 to 8 μg/ml, with no changes occurring in any macrolide resistance determinant. CEM-101 had low MICs as well as low potential for the selection of resistant mutants, independent of bacterial species or resistance phenotypes in pneumococci and S. pyogenes.


Antimicrobial Agents and Chemotherapy | 2000

In vitro selection of resistance to clinafloxacin, ciprofloxacin, and trovafloxacin in Streptococcus pneumoniae.

Kensuke Nagai; Todd A. Davies; Glenn A. Pankuch; Bonifacio Dewasse; Michael R. Jacobs; Peter C. Appelbaum

ABSTRACT Ability of daily sequential subcultures in subinhibitory concentrations of clinafloxacin, ciprofloxacin, and trovafloxacin to select resistant mutants was studied in 10 pneumococci (ciprofloxacin MICs, 1 to 4 μg/ml, and clinafloxacin and trovafloxacin MICs, 0.06 to 0.125 μg/ml [n = 9]; ciprofloxacin, clinafloxacin, and trovafloxacin MICs, 32, 0.5, and 2 μg/ml, respectively [n = 1]). Subculturing was done 50 times, or until MICs increased fourfold or more. Mutants for which MICs were fourfold (or more) higher than those for parent strains were selected in five strains by clinafloxacin, in six strains by trovafloxacin, and nine strains by ciprofloxacin. Sequence analysis of type II topoisomerase showed that most mutants had mutations in ParC at Ser79 or Asp83 and in GyrA at Ser81, while a few mutants had mutations in ParE or GyrB. In the presence of reserpine, the MICs of ciprofloxacin and clinafloxacin for most mutants were lower (four to eight times lower), but for none of the mutants were trovafloxacin MICs lower, suggesting an efflux mechanism affecting the first two agents but not trovafloxacin. Single-step mutation rates were also determined for eight strains for which the MICs were as follows: 0.06 μg/ml (clinafloxacin), 0.06 to 0.125 μg/ml (trovafloxacin), and 1 μg/ml (ciprofloxacin). Single-step mutation rates with drugs at the MIC were 2.0×10−9 to <1.1×10−11, 5.0×10−4 to 3.6×10−9, and 4.8×10−4 to 6.7×10−9, respectively. For two strains with clinafloxacin MICs of 0.125 to 0.5 μg/ml trovafloxacin MICs of 0.125 to 2 μg/ml, ciprofloxacin MICs of 4 to 32 μg/ml mutation rates with drugs at the MIC were 1.1×10−8−9.6×10−8, 3.3×10−6−6.7×10−8, and 2.3×10−5−2.4×10−7, respectively. Clinafloxacin was bactericidal at four times the MIC after 24 h against three parent and nine mutant strains by time-kill study. This study showed that single and multistep clinafloxacin exposure selected for resistant mutants less frequently than similar exposures to other drugs studied.


Antimicrobial Agents and Chemotherapy | 2002

In Vitro Selection of Resistance in Haemophilus influenzae by Amoxicillin-Clavulanate, Cefpodoxime, Cefprozil, Azithromycin, and Clarithromycin

Catherine Clark; Bülent Bozdogan; Mihaela Perić; Bonifacio Dewasse; Michael R. Jacobs; Peter C. Appelbaum

ABSTRACT Abilities of amoxicillin-clavulanate, cefpodoxime, cefprozil, azithromycin, and clarithromycin to select resistant mutants of Haemophilus influenzae were tested by multistep and single-step methodologies. For multistep studies, 10 random strains were tested: 5 of these were β-lactamase positive. After 50 daily subcultures in amoxicillin-clavulanate, MICs did not increase more than fourfold. However, cefprozil MICs increased eightfold for one strain. Clarithromycin and azithromycin gave a >4-fold increase in 8 and 10 strains after 14 to 46 and 20 to 50 days, respectively. Mutants selected by clarithromycin and azithromycin were associated with mutations in 23S rRNA and ribosomal proteins L4 and L22. Three mutants selected by clarithromycin or azithromycin had alterations in ribosomal protein L4, while five had alterations in ribosomal protein L22. Two mutants selected by azithromycin had mutations in the gene encoding 23S rRNA: one at position 2058 and the other at position 2059 (Escherichia coli numbering), with replacement of A by G. One clone selected by clarithromycin became hypersusceptible to macrolides. In single-step studies azithromycin and clarithromycin had the highest mutation rates, while amoxicillin-clavulanate had the lowest. All resistant clones were identical to parents as observed by pulsed-field gel electrophoresis. The MICs of azithromycin for azithromycin-resistant clones were 16 to >128 μg/ml, and those of clarithromycin for clarithromycin-resistant clones were 32 to >128 μg/ml in multistep studies. For strains selected by azithromycin, the MICs of clarithromycin were high and vice versa. After 50 daily subcultures in the presence of drugs, MICs of amoxicillin-clavulanate and cefpodoxime against H. influenzae did not rise more than fourfold, in contrast to cefprozil, azithromycin, and clarithromycin, whose MICs rose to variable degrees.


Antimicrobial Agents and Chemotherapy | 2006

Antipneumococcal Activity of DW-224a, a New Quinolone, Compared to Those of Eight Other Agents

Klaudia Kosowska-Shick; Kim Credito; Glenn A. Pankuch; Gengrong Lin; Bülent Bozdogan; Pamela McGhee; Bonifacio Dewasse; Dong-Rack Choi; Jei Man Ryu; Peter C. Appelbaum

ABSTRACT DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC50, 0.016 μg/ml; MIC90, 0.03 μg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. β-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 μg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2× MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days.


Antimicrobial Agents and Chemotherapy | 2007

Antistaphylococcal Activity of CG400549, a New Experimental FabI Inhibitor, Compared with That of Other Agents

Tatiana Bogdanovich; Catherine Clark; Klaudia Kosowska-Shick; Bonifacio Dewasse; Pamela McGhee; Peter C. Appelbaum

ABSTRACT Among 203 strains of Staphylococcus aureus, the MICs of CG400549 were 0.06 to 1.0 μg/ml, with MIC50 and MIC90 values of 0.25 μg/ml each. All strains were susceptible to linezolid and quinupristin-dalfopristin (MICs, 0.25 to 2.0 μg/ml). The daptomycin MICs were 0.25 to 2.0 μg/ml for methicillin-susceptible and 0.25 to 4.0 μg/ml against methicillin-resistant strains (including vancomycin-intermediate strains). Single-passage selection testing showed low resistance frequencies with CG400549, but multistep analysis showed that CG400549 yielded resistant mutants after 14 to 17 days in all strains tested.

Collaboration


Dive into the Bonifacio Dewasse's collaboration.

Top Co-Authors

Avatar

Peter C. Appelbaum

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Catherine Clark

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pamela McGhee

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael R. Jacobs

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Glenn A. Pankuch

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Klaudia Kosowska-Shick

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kim Credito

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gengrong Lin

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Linda Beachel

Penn State Milton S. Hershey Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge