Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boqiang Hu is active.

Publication


Featured researches published by Boqiang Hu.


Nature | 2014

The DNA methylation landscape of human early embryos

Hongshan Guo; Ping Zhu; Liying Yan; Rong Li; Boqiang Hu; Ying Lian; Jie Yan; Xiulian Ren; Shengli Lin; Junsheng Li; Xiaohu Jin; Xiaodan Shi; Ping Liu; Xiaoye Wang; Wei Wang; Yuan Wei; Xianlong Li; Fan Guo; Xinglong Wu; Xiaoying Fan; Jun Yong; Lu Wen; Sunney X. Xie; Fuchou Tang; Jie Qiao

DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.


Cell Stem Cell | 2014

Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming

Xiao Hu; Lei Zhang; Shi-Qing Mao; Zheng Li; Jiekai Chen; Run-Rui Zhang; Hai-Ping Wu; Juan Gao; Fan Guo; Wei Liu; Gui-Fang Xu; Hai-Qiang Dai; Yujiang Geno Shi; Xianlong Li; Boqiang Hu; Fuchou Tang; Duanqing Pei; Guoliang Xu

Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.


Cell | 2015

The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells

Fan Guo; Liying Yan; Hongshan Guo; Lin Li; Boqiang Hu; Yangyu Zhao; Jun Yong; Yuqiong Hu; Xiaoye Wang; Yuan Wei; Wei Wang; Rong Li; Jie Yan; Xu Zhi; Yan Zhang; Hongyan Jin; Wenxin Zhang; Yu Hou; Ping Zhu; Jingyun Li; Ling Zhang; Sirui Liu; Yixin Ren; Xiaohui Zhu; Lu Wen; Yi Qin Gao; Fuchou Tang; Jie Qiao

Germ cells are vital for transmitting genetic information from one generation to the next and for maintaining the continuation of species. Here, we analyze the transcriptome of human primordial germ cells (PGCs) from the migrating stage to the gonadal stage at single-cell and single-base resolutions. Human PGCs show unique transcription patterns involving the simultaneous expression of both pluripotency genes and germline-specific genes, with a subset of them displaying developmental-stage-specific features. Furthermore, we analyze the DNA methylome of human PGCs and find global demethylation of their genomes. Approximately 10 to 11 weeks after gestation, the PGCs are nearly devoid of any DNA methylation, with only 7.8% and 6.0% of the median methylation levels in male and female PGCs, respectively. Our work paves the way toward deciphering the complex epigenetic reprogramming of the germline with the aim of restoring totipotency in fertilized oocytes.


Cell Research | 2016

Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas

Yu Hou; Huahu Guo; Chen Cao; Xianlong Li; Boqiang Hu; Ping Zhu; Xinglong Wu; Lu Wen; Fuchou Tang; Yanyi Huang; Jirun Peng

Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells.


Cell Research | 2017

Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells

Fan Guo; Lin Li; Jingyun Li; Xinglong Wu; Boqiang Hu; Ping Zhu; Lu Wen; Fuchou Tang

Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA methylation dynamics at single-base resolution in early mouse embryos and provides new insights into the heterogeneous yet highly ordered features of epigenomic reprogramming during this process.


Nature Structural & Molecular Biology | 2016

BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes

Chao Yu; Shu-Yan Ji; Qian-Qian Sha; Yujiao Dang; Jian-Jie Zhou; Yin-Li Zhang; Yang Liu; Zhong-Wei Wang; Boqiang Hu; Qing-Yuan Sun; Shao-Chen Sun; Fuchou Tang; Heng-Yu Fan

The mRNAs stored in oocytes undergo general decay during the maternal-zygotic transition (MZT), and their stability is tightly interconnected with meiotic cell-cycle progression. However, the factors that trigger decay of maternal mRNA and couple this event to oocyte meiotic maturation remain elusive. Here, we identified B-cell translocation gene-4 (BTG4) as an MZT licensing factor in mice. BTG4 bridged CNOT7, a catalytic subunit of the CCR4–NOT deadenylase, to eIF4E, a key translation initiation factor, and facilitated decay of maternal mRNA. Btg4-null females produced morphologically normal oocytes but were infertile, owing to early developmental arrest. The intrinsic MAP kinase cascade in oocytes triggered translation of Btg4 mRNA stored in fully grown oocytes by targeting the 3′ untranslated region, thereby coupling CCR4–NOT deadenylase–mediated decay of maternal mRNA with oocyte maturation and fertilization. This is a key step in oocyte cytoplasmic maturation that determines the developmental potential of mammalian embryos.


Genome Biology | 2016

Tracing the expression of circular RNAs in human pre-implantation embryos

Yujiao Dang; Liying Yan; Boqiang Hu; Xiaoying Fan; Yixin Ren; Rong Li; Ying Lian; Jie Yan; Qingqing Li; Yan Zhang; Min Li; Xiulian Ren; Jin Huang; Yuqi Wu; Ping Liu; Lu Wen; Chen Zhang; Yanyi Huang; Fuchou Tang; Jie Qiao

BackgroundPolyA– RNAs have not been widely analyzed in human pre-implantation embryos due to the scarcity of materials. In particular, circular RNA (circRNA), a novel type of polyA– RNA, has not been characterized during human pre-implantation development.ResultsWe systematically analyze polyA+ messenger RNAs (mRNAs) and polyA– RNAs in individual human oocytes and pre-implantation embryos using SUPeR-seq. We de novo identify 10,032 circRNAs from 2974 hosting genes. Most of these circRNAs are developmentally stage-specific and dynamically regulated. Many of them are maternally expressed, implying their potentially important regulatory functions in oogenesis and the formation of totipotent zygotes. Comparison between human and mouse embryos reveals both high conservation and clear distinction between these two species. Human pre-implantation embryos generate more types of circRNA compared with mouse embryos and this is associated with a striking increase of the length of the circRNA flanking introns in humans. We also perform RNA de novo assembly and identify novel transcript units, many of which are potentially novel long non-coding RNAs.ConclusionsThis study reports the first analysis of the whole transcriptome comprising both polyA+ mRNAs and polyA– RNAs including circRNAs during human pre-implantation development. It provides an invaluable resource for analyzing the unique function and complex regulatory mechanisms of circRNAs during this process.


Cell Research | 2017

DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells.

Hongshan Guo; Boqiang Hu; Liying Yan; Jun Yong; Yan Wu; Yun Gao; Fan Guo; Yu Hou; Xiaoying Fan; Ji Dong; Xiaoye Wang; Xiaohui Zhu; Jie Yan; Yuan Wei; Hongyan Jin; Wenxin Zhang; Lu Wen; Fuchou Tang; Jie Qiao

Chromatin remodeling is important for the epigenetic reprogramming of human primordial germ cells. However, the comprehensive chromatin state has not yet been analyzed for human fetal germ cells (FGCs). Here we use nucleosome occupancy and methylation sequencing method to analyze both the genome-wide chromatin accessibility and DNA methylome at a series of crucial time points during fetal germ cell development in both human and mouse. We find 116 887 and 137 557 nucleosome-depleted regions (NDRs) in human and mouse FGCs, covering a large set of germline-specific and highly dynamic regulatory genomic elements, such as enhancers. Moreover, we find that the distal NDRs are enriched specifically for binding motifs of the pluripotency and germ cell master regulators such as NANOG, SOX17, AP2γ and OCT4 in human FGCs, indicating the existence of a delicate regulatory balance between pluripotency-related genes and germ cell-specific genes in human FGCs, and the functional significance of these genes for germ cell development in vivo. Our work offers a comprehensive and high-resolution roadmap for dissecting chromatin state transition dynamics during the epigenomic reprogramming of human and mouse FGCs.


Nature Genetics | 2018

Single-cell DNA methylome sequencing of human preimplantation embryos

Ping Zhu; Hongshan Guo; Yixin Ren; Yu Hou; Ji Dong; Rong Li; Ying Lian; Xiaoying Fan; Boqiang Hu; Yun Gao; Xiaoye Wang; Yuan Wei; Ping Liu; Jie Yan; Xiulian Ren; Peng Yuan; Yi-Feng Yuan; Zhiqiang Yan; Lu Wen; Liying Yan; Jie Qiao; Fuchou Tang

DNA methylation is a crucial layer of epigenetic regulation during mammalian embryonic development1–3. Although the DNA methylome of early human embryos has been analyzed4–6, some of the key features have not been addressed thus far. Here we performed single-cell DNA methylome sequencing for human preimplantation embryos and found that tens of thousands of genomic loci exhibited de novo DNA methylation. This finding indicates that genome-wide DNA methylation reprogramming during preimplantation development is a dynamic balance between strong global demethylation and drastic focused remethylation. Furthermore, demethylation of the paternal genome is much faster and thorough than that of the maternal genome. From the two-cell to the postimplantation stage, methylation of the paternal genome is consistently lower than that of the maternal genome. We also show that the genetic lineage of early blastomeres can be traced by DNA methylation analysis. Our work paves the way for deciphering the secrets of DNA methylation reprogramming in early human embryos.An analysis of single-cell DNA methylome sequencing data from human preimplantation embryos finds evidence for de novo methylation. Methylation reprogramming at this stage is a balance between global demethylation, which is faster in the paternal genome, and focused remethylation.


Journal of Biological Chemistry | 2016

Epigenomic landscape of human fetal brain, heart, and liver

Liying Yan; Hongshan Guo; Boqiang Hu; Rong Li; Jun Yong; Yangyu Zhao; Xu Zhi; Xiaoying Fan; Fan Guo; Xiaoye Wang; Wei Wang; Yuan Wei; Yan Wang; Lu Wen; Jie Qiao; Fuchou Tang

The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development.

Collaboration


Dive into the Boqiang Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Guo

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge