Bori Handjiski
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bori Handjiski.
Nature Medicine | 2007
Sandra M. Blois; Juan M. Ilarregui; Mareike Tometten; Mariana Garcia; Arif S. Orsal; Rosalia Cordo-Russo; Marta A. Toscano; Germán A. Bianco; Peter Kobelt; Bori Handjiski; Irene Tirado; Udo R. Markert; Burghard F. Klapp; Françoise Poirier; Julia Szekeres-Bartho; Gabriel A. Rabinovich; Petra C. Arck
A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expression during failing pregnancies, Gal-1–deficient (Lgals1−/−) mice showed higher rates of fetal loss compared to wild-type mice in allogeneic matings, whereas fetal survival was unaffected in syngeneic matings. Treatment with recombinant Gal-1 prevented fetal loss and restored tolerance through multiple mechanisms, including the induction of tolerogenic dendritic cells, which in turn promoted the expansion of interleukin-10 (IL-10)–secreting regulatory T cells in vivo. Accordingly, Gal-1s protective effects were abrogated in mice depleted of regulatory T cells or deficient in IL-10. In addition, we provide evidence for synergy between Gal-1 and progesterone in the maintenance of pregnancy. Thus, Gal-1 is a pivotal regulator of fetomaternal tolerance that has potential therapeutic implications in threatened pregnancies.
The FASEB Journal | 2000
Kerstin Foitzik; Gerd Lindner; Sven Mueller-Roever; Marcus Maurer; Natasha Botchkareva; Vladimir A. Botchkarev; Bori Handjiski; Martin Metz; Toshihiko Hibino; Tsutomu Soma; G. Paolo Dotto; Ralf Paus
The regression phase of the hair cycle (catagen) is an apoptosis‐driven process accompanied by terminal differentiation, proteolysis, and matrix remodeling. As an inhibitor of keratinocyte proliferation and inductor of keratinocyte apoptosis, transforming growth factor β1 (TGF‐β1) has been proposed to play an important role in catagen regulation. This is suggested, for example, by maximal expression of TGF‐β1 and its receptors during late anagen and the onset of catagen of the hair cycle. We examined the potential involvement of TGF‐β1 in catagen control. We compared the first spontaneous entry of hair follicles into catagen between TGF‐β1 null mice and age‐matched wild‐type littermates, and assessed the effects of TGF‐β1 injection on murine anagen hair follicles in vivo. At day 18 p.p., hair follicles in TGF‐β1 —/— mice were still in early catagen, whereas hair follicles of +/+ littermates had already entered the subsequent resting phase (telogen). TGF‐β1 — /— mice displayed more Ki‐67‐positive cells and fewer apoptotic cells than comparable catagen follicles from +/+ mice. In contrast, injection of TGF‐β1 into the back skin of mice induced premature catagen development. In addition, the number of proliferating follicle keratino‐cytes was reduced and the number of TUNEL + cells was increased in the TGF‐β1‐treated mice compared to controls. Double visualization of TGF‐β type II receptor (TGFRII) and TUNEL reactivity revealed colocalization of apoptotic nuclei and TGFRII in catagen follicles. These data strongly support that TGF‐β1 ranks among the elusive endogenous regulators of catagen induction in vivo, possibly via the inhibition of keratinocyte proliferation and induction of apoptosis. Thus, TGF‐βRII agonists and antagonists may provide useful therapeutic tools for human hair growth disorders based on premature or retarded catagen development (effluvium, alopecia, hirsutism).—Foitzik, K., Lindner, G., Mueller‐Roever, S., Maurer, M., Botchkareva, N., Botchkarev, V., Handjiski, B., Metz, M., Hibino, T., Soma, T., Dotto, G. P., Paus, R. Control of murine hair follicle regression (catagen) by TGF‐β1 in vivo. FASEB J. 14, 752–760 (2000)
American Journal of Pathology | 2003
Petra C. Arck; Bori Handjiski; Eva M.J. Peters; Anita Peter; Evelin Hagen; Axel Fischer; Burghard F. Klapp; Ralf Paus
It has been much disputed whether or not stress can cause hair loss (telogen effluvium) in a clinically relevant manner. Despite the paramount psychosocial importance of hair in human society, this central, yet enigmatic and controversial problem of clinically applied stress research has not been systematically studied in appropriate animal models. We now show that psychoemotional stress indeed alters actual hair follicle (HF) cycling in vivo, ie, prematurely terminates the normal duration of active hair growth (anagen) in mice. Further, inflammatory events deleterious to the HF are present in the HF environment of stressed mice (perifollicular macrophage cluster, excessive mast cell activation). This provides the first solid pathophysiological mechanism for how stress may actually cause telogen effluvium, ie, by hair cycle manipulation and neuroimmunological events that combine to terminate anagen. Furthermore, we show that most of these hair growth-inhibitory effects of stress can be reproduced by the proteotypic stress-related neuropeptide substance P in nonstressed mice, and can be counteracted effectively by co-administration of a specific substance P receptor antagonist in stressed mice. This offers the first convincing rationale how stress-induced hair loss in men may be pharmacologically managed effectively.
British Journal of Dermatology | 1994
Bori Handjiski; Stefan B. Eichmüller; U. Hofmann; B. M. Czarnetzki; Ralf Paus
For unknown reasons, the pilosebaceous unit displays prominent alkaline phosphatase (AP) activity, and alterations in AP activity are seen in alopecia areata. The role of AP in hair biology and pathology has been obscured by contradictory reports on the localization and activity of AP during the hair cycle, and by a paucity of instructive models for studying AP functions. Using the C57 BL‐6 mouse model for hair research, we have characterized endogenous AP with a simple histochemical developing solution routinely employed for AP immunohistology. This method was selective for AP, and revealed distinctive hair cycle‐dependent changes in AP activity and localization. Although the dermal papilla displays unusually strong AP activity during the entire hair cycle, the outer root sheath is AP‐positive only during late anagen and early catagen. Strong, rather homogeneous AP activity is seen in the sebaceous gland (SG) only during catagen and telogen. This AP staining pattern indicates hair cycle‐dependent changes in SG functions, and differs to some extent from the previously reported AP activity during the hair cycle of various species. We propose a simple and effective technique for follicle classification based on the AP histochemistry of dermal papilla and sebaceous gland, and discuss uses of the C57 BL‐6 mouse model for functional AP studies.
The FASEB Journal | 2006
Petra C. Arck; Rupert W. Overall; Katharina Spatz; Christiane Liezman; Bori Handjiski; Burghard F. Klapp; Mark A. Birch-Machin; Eva M.J. Peters
Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical‐induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The “common” deletion, a marker mitochondrial DNA‐deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.—Arck, P. C., Overall, R., Spatz, K., Liezman, C., Handjiski, B., Klapp, B. F., Birch‐Machin, M. A., Peters, E. M. J. Towards a “free radical theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J. 20, E908‐E920 (2006)
The FASEB Journal | 2000
Gerd Lindner; Andreas Menrad; Ermanno Gherardi; Glenn Merlino; Pia Welker; Bori Handjiski; Birgit Roloff; Ralf Paus
HGF/SF and its receptor (Met) are principal mediators of mesenchymal‐epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis‐driven HF regression (cata‐gen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild‐type controls, transgenic mice overexpressing HGF/SF under the control of the MT‐1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met‐mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.—Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling. FASEB J. 14, 319–332 (2000)
The FASEB Journal | 2001
Petra C. Arck; Bori Handjiski; Evelin Hagen; Ricarda Joachim; Burghard F. Klapp; Ralf Paus
It has long been suspected that stress can cause hair loss, although convincing evidence of this has been unavailable. Here, we show that in mice sonic stress significantly increased the number of hair follicles containing apoptotic cells and inhibited intrafollicular keratinocyte proliferation in situ. Sonic stress also significantly increased the number of activated perifollicular macrophage clusters and the number of degranulated mast cells, whereas it down‐regulated the number of intraepithelial γδ T lymphocytes. These stress‐induced immune changes could be mimicked by injection of the neuropeptide substance P in nonstressed mice and were abrogated by a selective substance P receptor antagonist in stressed mice. We conclude that stress can indeed inhibit hair growth in vivo, probably via a substance P‐dependent activation of macrophages and/or mast cells in the context of a brain‐hair follicle axis.
Journal of Molecular Medicine | 2005
Petra C. Arck; Bori Handjiski; Arne Kuhlmei; Eva M.J. Peters; Maike Knackstedt; Anita Peter; Stephen P. Hunt; Burghard F. Klapp; Ralf Paus
Despite the lack of insight on distinct mediators in the skin orchestrating the pathophysiological response to stress, hair loss has often been reported to be caused by stress. Recently we revealed the existence of a “brain-hair follicle axis” by characterizing the neurokinin (NK) substance P (SP) as a central element in the stress-induced threat to the hair follicle, resulting in premature onset of catagen accompanied by mast cell activation in the skin. However, our understanding of possible SP–mast cell interactions in the skin in response to stress was limited since the receptor by which SP activates skin mast cells and the extent of mast cell mediated aggravation of SP remained to be elucidated. We now employed NK-1 receptor knockout mice (NK-1R−/−) and mast cell deficient W/Wv mice and observed that stress-triggered premature induction of catagen and hair follicle apoptosis does not occur in NK1−/− and W/Wv mice. Furthermore, the activation status of mast cells was less in stressed NK1−/− mice than in wild-type control. Additionally, stress-induced upregulation of SP positive nerve fibers was absent in both NK-1R and W/Wv mice. These results indicate that the cross-talk between SP and mast cell activation via NK-1R appears to be the most important pathway in the regulation of hair follicle cycling upon stress response.
Journal of Molecular Medicine | 2007
Ricarda Joachim; Arne Kuhlmei; Q. Thai Dinh; Bori Handjiski; Tanja C Fischer; Eva M.J. Peters; Burghard F. Klapp; Ralf Paus; Petra C. Arck
Emerging research indicates that central-nervous stress perception is translated to peripheral tissues such as the skin not only via classical stress hormones but also via neurotrophins and neuropeptides. This can result in neurogenic inflammation, which is likely to contribute to the triggering and/aggravation of immunodermatoses. Although the existence of such a “brain–skin connection” is supported by steadily increasing experimental evidence, it remains unclear to which extent perceived stress affects the sensory “hardwiring” between skin and its afferent neurons in the corresponding dorsal root ganglia (DRG). In this paper, we provide experimental evidence in a murine model of stress (exposure of C57BL/6 mice to sound stress) that stress exposure, or intracutaneous injection of recombinant nerve growth factor (NGF) to mimic the skin’s response to stress, up-regulate the percentage of substance P (SP)+ or calcitonin gene-related peptide (CGRP)+ sensory neurons in skin-innervating DRG. Further, we show that the number of SP+ or CGRP+ sensory nerve fibers in the dermis of stressed C57BL/6 mice is significantly increased. Finally, we document that neutralization of NGF activity abrogates stress-induced effects on the percentage of SP+ and CGRP+ sensory neurons in skin-innervating DRG as well as on dermal sensory nerve fibers. These data suggest that high stress perception results in an intense cross talk between the skin and skin-innervating DRG, which increases the likelihood of NGF-dependent neurogenic skin inflammation by enhancing sensory skin innervation.
Experimental Dermatology | 2010
Petra C. Arck; Bori Handjiski; Evelin Hagen; Maike Pincus; Christian Bruenahl; John Bienenstock; Ralf Paus
Please cite this paper as: Is there a ‘gut–brain–skin axis’? Experimental Dermatology 2010; 19: 401–405.