Boris Apter
Holon Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boris Apter.
Applied Optics | 2004
Boris Apter; Uzi Efron; Eldad Bahat-Treidel
A detailed simulation of the fringing-field effect in liquid-crystal (LC)-based blazed-grating structures has been carried out. These studies are aimed at clarifying the relationship between the width of the fringing-field-broadened phase profile of the blazed grating and the LC cell thickness. This fringing-field broadening of the blazed gratings phase profile is shown to affect mostly the 2pi phase-step zone (fly-back zone) of the blazed grating. The results of the simulations carried out on the blazed-grating structure indicate two main effects of the fringing field: (1) reduction in the attainable diffraction efficiency and (2) limitation of the maximum deflection angle of the device. Both effects are shown to be directly linked to the broadening of the fly-back zone, which is shown to be proportional to the LC cell thickness.
Journal of The Optical Society of America A-optics Image Science and Vision | 2004
Uzi Efron; Boris Apter; Eldad Bahat-Treidel
An approximate analytical model was developed that links the fringing-field broadening of the phase profile of a liquid-crystal (LC) beam-steering device, and the resulting diffraction efficiency, to the physical parameters of the device including the cell thickness as well as the dielectric, optical, and geometrical constants of the device. The analysis includes a full solution of the Laplace equation for the LC device in which the broadening of the initial voltage profile into an effective voltage-drop profile, due to the fringing-field effect, is derived. It is shown that within the linear approximation used, the broadening of the phase profile is identical to the broadening of the effective voltage profile in the presence of the fringing field. On the basis of this model, the resulting broadening kernel of the phase profile is found to be proportional to the LC cell thickness. These results are found to be in an excellent agreement with high-precision computer simulations performed on the LC beam-steering structure, thereby validating this approximate linear model.
Optics Express | 2013
A. Axelevitch; Boris Apter; G. Golan
Localized surface plasmons-polaritons represent collective behavior of free electrons confined to metal particles. This effect may be used for enhancing efficiency of solar cells and for other opto-electronic applications. Plasmon resonance strongly affects optical properties of ultra-thin, island-like, metal films. In the present work, the Finite Difference Time Domain (FDTD) method is used to model transmittance spectra of thin gold island films grown on a glass substrate. The FDTD calculations were performed for island structure, corresponding to the Volmer-Weber model of thin film growth. The proposed simulation model is based on fitting of experimental data on nanostructure of ultra-thin gold films, reported in several independent studies, to the FDTD simulation setup. The results of FDTD modeling are then compared to the experimentally measured transmittance spectra of prepared thin gold films and found to be in a good agreement with experimental data.
Nano Letters | 2012
Guangqi Li; Manmohan S. Shishodia; Boris D. Fainberg; Boris Apter; Michal Oren; Abraham Nitzan; Mark A. Ratner
We have studied the influence of both exciton effects and Coulomb repulsion on current in molecular nanojunctions. We show that dipolar energy-transfer interactions between the sites in the wire can at high voltage compensate Coulomb blocking for particular relationships between their values. Tuning this relationship may be achieved by using the effect of plasmonic nanostructure on dipolar energy-transfer interactions.
Optics Letters | 2010
Oren Guilatt; Boris Apter; Uzi Efron
Computer simulation studies of absorption enhancement in a silicon (Si) substrate by nanoshell-related localized surface plasmon resonance (LSPR) based on a finite-difference time-domain analysis are presented. The results of these studies show significant enhancement of over 15x in the near-bandgap spectral region of Si, using 40 nm diameter, two-dimensional silver (Ag) nanoshells, simulating cylindrical nanoshell structure. The studies also indicate a clear advantage of the cylindrical nanoshell structure over that of a completely filled Ag-nanocylinders. The enhancement was studied as a function of the metallic shell thickness. The results suggest that the main enhancement mechanism in this case of tubular nanoshells embedded in the Si substrate is that of field-enhanced absorption caused by the strong LSPR-enhanced electric field, extending into the silicon substrate.
IEEE Transactions on Circuits and Systems for Video Technology | 2004
Uzi Efron; I. David; Vladimir Sinelnikov; Boris Apter
The design of a novel, CMOS-liquid-crystal-based image transceiver device (ITD) is described. The device combines both functions of imaging and display by means of a dual-function array formed in a single-processed chip. The image transceiver system design allows the integration of the see-through, aiming, imaging, and display of a superposed image into a single, compact, head-mounted goggle. The timing, sequencing, and control of the ITD array are designed in a pipeline array-processing scheme. The CMOS-based pixel elements are designed to provide efficient imaging in the visible range as well as driver capabilities for the overlying liquid crystal modulator. The image sensor part of the pixel consists of an n-well photodiode and a three-transistor readout circuit and is based on a back-illuminated sensor configuration. In order to provide a high imager fill-factor, two pixel configurations were conceived and analyzed: 1) a p++/p/sup -//p-well silicon structure using twin-well CMOS process and 2) an n-well processed silicon structure with a micro-lens array. The display portion of the ITD, based on LCOS micro-display technology, consists of a silicon-based reflective, active matrix driver, using a nematic liquid crystal. Details of the device design and its control system are presented.
Acta Biomaterialia | 2016
Amir Handelman; Boris Apter; Nir A. Turko; G. Rosenman
Unique linear and nonlinear optical properties of bioinspired peptide nanostructures such as wideband transparency and high second-order nonlinear optical response, combined with elongated tubular shape of variable size and rapid self-assembly fabrication process, make them promising for diverse bio-nano-photonic applications. This new generation of nanomaterials of biological origin possess physical properties similar to those of biological structures. Here, we focus on new specific functionality of ultrashort peptide nanotubes to guide light at fundamental and second-harmonic generation (SHG) frequency in horizontal and vertical peptide nanotubes configurations. Conducted simulations and experimental data show that these self-assembled linear and nonlinear optical bio-waveguides provide strong optical power confinement factor, demonstrate pronounced directionality of SHG and high conversion efficiency of SHG ∼10(-5). Our study gives new insight on physics of light propagation in nanostructures of biological origin and opens the avenue towards new and unexpected applications of these waveguiding effects in bio-nanomaterials both for biomedical nonlinear microscopy imaging recognition and development of novel integrated nanophotonic devices.
Proceedings of SPIE | 2005
Uzi Efron; Boris Apter; Eldad Bahat-Treidel
Liquid crystal (LC) devices including displays, beam-steering devices, electrically- and optically-controlled spatial light modulators, are widely used in a variety of applications. Some important operational properties of these devices, such as spatial resolution and diffraction efficiency, are severely limited by the influence of fringing electrical fields, generated between adjacent pixel electrodes. This work combines the results of three recent studies encompassing computer simulation, the development of an approximate analytical model and its experimental verification. The approximate analytical model ties the fringing-field-dependent broadening kernel, to the physical LC Cell properties. In particular, it is shown that, the broadening of the phase profile due to the fringing field is proportional to the LC cell thickness. These results are found to be in an excellent agreement both with high-precision computer simulations and experimental results. Finally, the phase broadening kernel is found to be independent of the particular shape of the phase profile, allowing the model to be used for other LC device architectures such as LCDs.
Applied Optics | 2005
Eldad Bahat-Treidel; Boris Apter; Uzi Efron
The fringing-field broadening of a phase-step profile and its dependence on the thickness of a liquid-crystal (LC) cell were studied in a simple, three-electrode LC cell structure consisting of two lateral electrodes biased with a differential voltage and a third, grounded, electrode placed on the opposite substrate. The results were compared both with an approximate analytical model developed earlier for a fringe-field-broadening kernel and with computer simulations. Good agreement between the experiment and the theoretical as well as the simulation results is shown.
Applied Optics | 2011
Boris Apter; Oren Guilatt; Uzi Efron
A simple, approximate theoretical model of surface plasmon resonance in two-dimensional metal nanoshells is developed. The model is based on the concept of short-range surface plasmons propagating around closed circular metal nanotubes. In this model, the plasmon resonance in a metal nanotube is treated as a propagating, self-interfering plasmonic wave, in a ring-type resonance, at plasmonic wavelengths matching an integer fraction of the nanotubes effective circumference. The model is validated by detailed computer simulations based on the finite-difference time-domain method and is shown to be in full agreement with the widely used plasmon hybridization model, which is based on the quasi-static approximation.