Uzi Efron
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Uzi Efron.
Applied Optics | 2004
Boris Apter; Uzi Efron; Eldad Bahat-Treidel
A detailed simulation of the fringing-field effect in liquid-crystal (LC)-based blazed-grating structures has been carried out. These studies are aimed at clarifying the relationship between the width of the fringing-field-broadened phase profile of the blazed grating and the LC cell thickness. This fringing-field broadening of the blazed gratings phase profile is shown to affect mostly the 2pi phase-step zone (fly-back zone) of the blazed grating. The results of the simulations carried out on the blazed-grating structure indicate two main effects of the fringing field: (1) reduction in the attainable diffraction efficiency and (2) limitation of the maximum deflection angle of the device. Both effects are shown to be directly linked to the broadening of the fly-back zone, which is shown to be proportional to the LC cell thickness.
Journal of The Optical Society of America A-optics Image Science and Vision | 2004
Uzi Efron; Boris Apter; Eldad Bahat-Treidel
An approximate analytical model was developed that links the fringing-field broadening of the phase profile of a liquid-crystal (LC) beam-steering device, and the resulting diffraction efficiency, to the physical parameters of the device including the cell thickness as well as the dielectric, optical, and geometrical constants of the device. The analysis includes a full solution of the Laplace equation for the LC device in which the broadening of the initial voltage profile into an effective voltage-drop profile, due to the fringing-field effect, is derived. It is shown that within the linear approximation used, the broadening of the phase profile is identical to the broadening of the effective voltage profile in the presence of the fringing field. On the basis of this model, the resulting broadening kernel of the phase profile is found to be proportional to the LC cell thickness. These results are found to be in an excellent agreement with high-precision computer simulations performed on the LC beam-steering structure, thereby validating this approximate linear model.
Optics Letters | 2010
Oren Guilatt; Boris Apter; Uzi Efron
Computer simulation studies of absorption enhancement in a silicon (Si) substrate by nanoshell-related localized surface plasmon resonance (LSPR) based on a finite-difference time-domain analysis are presented. The results of these studies show significant enhancement of over 15x in the near-bandgap spectral region of Si, using 40 nm diameter, two-dimensional silver (Ag) nanoshells, simulating cylindrical nanoshell structure. The studies also indicate a clear advantage of the cylindrical nanoshell structure over that of a completely filled Ag-nanocylinders. The enhancement was studied as a function of the metallic shell thickness. The results suggest that the main enhancement mechanism in this case of tubular nanoshells embedded in the Si substrate is that of field-enhanced absorption caused by the strong LSPR-enhanced electric field, extending into the silicon substrate.
IEEE Transactions on Circuits and Systems for Video Technology | 2004
Uzi Efron; I. David; Vladimir Sinelnikov; Boris Apter
The design of a novel, CMOS-liquid-crystal-based image transceiver device (ITD) is described. The device combines both functions of imaging and display by means of a dual-function array formed in a single-processed chip. The image transceiver system design allows the integration of the see-through, aiming, imaging, and display of a superposed image into a single, compact, head-mounted goggle. The timing, sequencing, and control of the ITD array are designed in a pipeline array-processing scheme. The CMOS-based pixel elements are designed to provide efficient imaging in the visible range as well as driver capabilities for the overlying liquid crystal modulator. The image sensor part of the pixel consists of an n-well photodiode and a three-transistor readout circuit and is based on a back-illuminated sensor configuration. In order to provide a high imager fill-factor, two pixel configurations were conceived and analyzed: 1) a p++/p/sup -//p-well silicon structure using twin-well CMOS process and 2) an n-well processed silicon structure with a micro-lens array. The display portion of the ITD, based on LCOS micro-display technology, consists of a silicon-based reflective, active matrix driver, using a nematic liquid crystal. Details of the device design and its control system are presented.
Sensors | 2008
Yitzhak David; Uzi Efron
The Image Transceiver Device (ITD) design is based on combining LCOS micro-display, image processing tools and back illuminated APS imager in single CMOS chip [1]. The device is under development for Head-Mounted Display applications in augmented and virtual reality systems. The main issues with the present design are a high crosstalk of the backside imager and the need to shield the pixel circuitry from the photo- charges generated in the silicon substrate. In this publication we present a modified, “deep p-well” ITD pixel design, which provides a significantly reduced crosstalk level, as well as an effective shielding of photo-charges for the pixel circuitry. The simulation performed using Silvaco software [ATLAS Silicon Device Simulator, Ray Trace and Light Absorption programs, Silvaco International, 1998] shows that the new approach provides high photo response and allows increasing the optimal thickness of the die over and above the 10-15 micrometers commonly used for back illuminated imaging devices, thereby improving its mechanical ruggedness following the thinning process and also providing a more efficient absorption of the long wavelength photons. The proposed deep p-well pixel structure is also a technology solution for the fabrication of high performance back illuminated CMOS image sensors.
Proceedings of SPIE | 2001
Uzi Efron; Isak Davidov; Vladimir Sinelnikov; Ilya Levin
A CMOS-Liquid Crystal-Based Image Transceiver Device (ITD) is under development at the Holon Institute of Technology. The device combines both functions of imaginary and display in a single array structure. This unique structure allows the combination of see-through, aiming, imaging and the displaying of a superposed image to be combined in a single, compact, head mounted display. The CMOS-based pixel elements are designed to provide image sensor part of the pixel is based on an n-well photodiode and a three-transistors readout circuit. The imaging function is based on a back- illuminated sensor configuration. In order to provide a high imager fill-factor, two pixel configuration are proposed: 1) A p++/p-/p-well silicon structure using twin- well CMOS process; 2) an n-well processed silicon structure with a micro-lens array. The display portion of the IT device is to be fabricate don a silicon-based reflective, active matrix driver, using nematic liquid crystal material. The reflective display pixel electrode is driven by an n-MOS transistor, formed in the corresponding pixel region on the silicon substrate. The timing, sequencing and control of the IT device array are designed in a pipeline array processing scheme. A preliminary prototype system and device design have been performed and the first test device is currently being tested. Details of the device design as well as its smart goggle applications are presented.
Proceedings of SPIE | 2005
Uzi Efron; Boris Apter; Eldad Bahat-Treidel
Liquid crystal (LC) devices including displays, beam-steering devices, electrically- and optically-controlled spatial light modulators, are widely used in a variety of applications. Some important operational properties of these devices, such as spatial resolution and diffraction efficiency, are severely limited by the influence of fringing electrical fields, generated between adjacent pixel electrodes. This work combines the results of three recent studies encompassing computer simulation, the development of an approximate analytical model and its experimental verification. The approximate analytical model ties the fringing-field-dependent broadening kernel, to the physical LC Cell properties. In particular, it is shown that, the broadening of the phase profile due to the fringing field is proportional to the LC cell thickness. These results are found to be in an excellent agreement both with high-precision computer simulations and experimental results. Finally, the phase broadening kernel is found to be independent of the particular shape of the phase profile, allowing the model to be used for other LC device architectures such as LCDs.
Applied Optics | 2005
Eldad Bahat-Treidel; Boris Apter; Uzi Efron
The fringing-field broadening of a phase-step profile and its dependence on the thickness of a liquid-crystal (LC) cell were studied in a simple, three-electrode LC cell structure consisting of two lateral electrodes biased with a differential voltage and a third, grounded, electrode placed on the opposite substrate. The results were compared both with an approximate analytical model developed earlier for a fringe-field-broadening kernel and with computer simulations. Good agreement between the experiment and the theoretical as well as the simulation results is shown.
Proceedings of SPIE, the International Society for Optical Engineering | 2001
Uzi Efron; Isak Davidov; Vladimir Sinelnikov; Asher A. Friesem
A CMOS-liquid crystal-based image transceiver device (ITD) is under development at the Holon Institute of Technology. The device combines both functions of imaging and display in a single array configuration. This unique structure allows the combination of see-through, aiming, imaging and the displaying of a superposed image to be combined in a single, compact, head mounted display. The CMOS-based pixel elements are designed to provide efficient imaging in the visible range as well as driver capabilities for the overlying liquid crystal modulator. The image sensor part of the pixel is based on an n-well photodiode and a three-transistor readout circuit. The imaging function is based on a back- illuminated sensor configuration. In order to provide a high imager fill-factor, two pixel configurations are proposed: 1) A p++/p-/p-well silicon structure using twin- well CMOS process; 2) An n-well processed silicon structure with a micro-lens array. The display portion of the IT device is to be fabricated on a silicon-based reflective, active matrix driver, using nematic liquid crystal material, in LCOS technology. The timing, sequencing and control of the IT device array are designed in a pipeline array processing scheme. A preliminary prototype system and device design have been performed and the first test device is currently undergoing testing. Details of the device design as well as its Smart Goggle applications are presented.
Applied Optics | 2011
Boris Apter; Oren Guilatt; Uzi Efron
A simple, approximate theoretical model of surface plasmon resonance in two-dimensional metal nanoshells is developed. The model is based on the concept of short-range surface plasmons propagating around closed circular metal nanotubes. In this model, the plasmon resonance in a metal nanotube is treated as a propagating, self-interfering plasmonic wave, in a ring-type resonance, at plasmonic wavelengths matching an integer fraction of the nanotubes effective circumference. The model is validated by detailed computer simulations based on the finite-difference time-domain method and is shown to be in full agreement with the widely used plasmon hybridization model, which is based on the quasi-static approximation.