Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Botao Qiao is active.

Publication


Featured researches published by Botao Qiao.


Nature Chemistry | 2011

Single-atom catalysis of CO oxidation using Pt1/FeOx.

Botao Qiao; Aiqin Wang; Xiaofeng Yang; Lawrence F. Allard; Zheng Jiang; Yi-Tao Cui; Jingyue Liu; Jun Li; Tao Zhang

Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.


Accounts of Chemical Research | 2013

Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis

Xiaofeng Yang; Aiqin Wang; Botao Qiao; Jun Li; Jingyue Liu; Tao Zhang

Supported metal nanostructures are the most widely used type of heterogeneous catalyst in industrial processes. The size of metal particles is a key factor in determining the performance of such catalysts. In particular, because low-coordinated metal atoms often function as the catalytically active sites, the specific activity per metal atom usually increases with decreasing size of the metal particles. However, the surface free energy of metals increases significantly with decreasing particle size, promoting aggregation of small clusters. Using an appropriate support material that strongly interacts with the metal species prevents this aggregation, creating stable, finely dispersed metal clusters with a high catalytic activity, an approach industry has used for a long time. Nevertheless, practical supported metal catalysts are inhomogeneous and usually consist of a mixture of sizes from nanoparticles to subnanometer clusters. Such heterogeneity not only reduces the metal atom efficiency but also frequently leads to undesired side reactions. It also makes it extremely difficult, if not impossible, to uniquely identify and control the active sites of interest. The ultimate small-size limit for metal particles is the single-atom catalyst (SAC), which contains isolated metal atoms singly dispersed on supports. SACs maximize the efficiency of metal atom use, which is particularly important for supported noble metal catalysts. Moreover, with well-defined and uniform single-atom dispersion, SACs offer great potential for achieving high activity and selectivity. In this Account, we highlight recent advances in preparation, characterization, and catalytic performance of SACs, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene. We discuss experimental and theoretical studies for a variety of reactions, including oxidation, water gas shift, and hydrogenation. We describe advances in understanding the spatial arrangements and electronic properties of single atoms, as well as their interactions with the support. Single metal atoms on support surfaces provide a unique opportunity to tune active sites and optimize the activity, selectivity, and stability of heterogeneous catalysts, offering the potential for applications in a variety of industrial chemical reactions.


Journal of the American Chemical Society | 2013

Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction

Jian Lin; Aiqin Wang; Botao Qiao; Xiaoyan Liu; Xiaofeng Yang; Xiaodong Wang; Jinxia Liang; Jun Li; Jingyue Liu; Tao Zhang

High specific activity and cost effectiveness of single-atom catalysts hold practical value for water gas shift (WGS) reaction toward hydrogen energy. We reported the preparation and characterization of Ir single atoms supported on FeO(x) (Ir1/FeO(x)) catalysts, the activity of which is 1 order of magnitude higher than its cluster or nanoparticle counterparts and is even higher than those of the most active Au- or Pt-based catalysts. Extensive studies reveal that the single atoms accounted for ∼70% of the total activity of catalysts containing single atoms, subnano clusters, and nanoparticles, thus serving as the most important active sites. The Ir single atoms seem to greatly enhance the reducibility of the FeO(x) support and generation of oxygen vacancies, leading to the excellent performance of the Ir1/FeO(x) single-atom catalyst. The results have broad implications on designing supported metal catalysts with better performance and lower cost.


Nature Communications | 2014

FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes

Haisheng Wei; Xiaoyan Liu; Aiqin Wang; Leilei Zhang; Botao Qiao; Xiaofeng Yang; Yanqiang Huang; Shu Miao; Jingyue Liu; Tao Zhang

The catalytic hydrogenation of nitroarenes is an environmentally benign technology for the production of anilines, which are key intermediates for manufacturing agrochemicals, pharmaceuticals and dyes. Most of the precious metal catalysts, however, suffer from low chemoselectivity when one or more reducible groups are present in a nitroarene molecule. Herein we report FeOx-supported platinum single-atom and pseudo-single-atom structures as highly active, chemoselective and reusable catalysts for hydrogenation of a variety of substituted nitroarenes. For hydrogenation of 3-nitrostyrene, the catalyst yields a TOF of ~1,500 h(-1), 20-fold higher than the best result reported in literature, and a selectivity to 3-aminostyrene close to 99%, the best ever achieved over platinum group metals. The superior performance can be attributed to the presence of positively charged platinum centres and the absence of Pt-Pt metallic bonding, both of which favour the preferential adsorption of nitro groups.


Nano Research | 2015

Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)

Botao Qiao; Jin Xia Liang; Aiqin Wang; Cong-Qiao Xu; Jun Li; Tao Zhang; Jingyue Jimmy Liu

Supported noble metal nanoparticles (including nanoclusters) are widely used in many industrial catalytic processes. While the finely dispersed nanostructures are highly active, they are usually thermodynamically unstable and tend to aggregate or sinter at elevated temperatures. This scenario is particularly true for supported nanogold catalysts because the gold nanostructures are easily sintered at high temperatures, under reaction conditions, or even during storage at ambient temperature. Here, we demonstrate that isolated Au single atoms dispersed on iron oxide nanocrystallites (Au1/FeOx) are much more sinteringresistant than Au nanostructures, and exhibit extremely high reaction stability for CO oxidation in a wide temperature range. Theoretical studies revealed that the positively charged and surface-anchored Au1 atoms with high valent states formed significant covalent metal-support interactions (CMSIs), thus providing the ultra-stability and remarkable catalytic performance. This work may provide insights and a new avenue for fabricating supported Au catalysts with ultra-high stability.


Angewandte Chemie | 2012

Design of a Highly Active Ir/Fe(OH)x Catalyst: Versatile Application of Pt‐Group Metals for the Preferential Oxidation of Carbon Monoxide

Jian Lin; Botao Qiao; Jingyue Liu; Yanqiang Huang; Aiqin Wang; Lin Li; Wansheng Zhang; Lawrence F. Allard; Xiaodong Wang; Tao Zhang

The proton-exchange membrane fuel cell (PEMFC) has been regarded as one of the most promising candidates for the efficient use of hydrogen energy. However, small amounts of CO (0.3–1%) in the H2 stream from reforming processes must be selectively removed because CO is highly poisonous to the Pt anode of a PEMFC. The preferential oxidation of CO in a H2-rich gas (PROX) is presently the most effective approach to address this problem. Oxide-supported Au catalysts are highly active for the PROX reaction even at room temperature, but the lower stability and sensitivity to CO2 constrain their practical applications. Supported Pt catalysts, on the other hand, are less active and only a few have shown reasonable activity for conversion of CO at temperatures lower than 60 8C. Therefore, it is highly desirable to develop improved catalysts with better catalytic performance for the PROX reaction at lower temperatures. Ir has a higher melting point and surface energy than other metals with 5f orbitals, such as Pt and Au, and Ir can be well-dispersed on and strongly interact with the support. However, compared to Ptand Au-based catalysts, Ir-based catalysts have limited applications in heterogeneous catalysis and are rarely investigated for the PROX reaction, most probably because of its inferior activity. Although much effort has been made to improve the activity of Ir-based catalysts and remarkable progress has been achieved, their activities for the PROX reaction are still low at low temperatures. In fact, there is no report so far claiming that Ir-based catalysts can show high activity at temperatures below 80 8C; thus it remains a formidable challenge to utilize Ir-based catalysts for the PROX reaction at ambient temperatures. One basic task of modern catalysis is to rationally design catalysts based on the fundamental understanding of their reaction mechanisms. Especially, the contribution of support materials to the performance of the final catalysts should be taken into account. For the PROX reaction, the strong binding of CO to Ir poisons the surface so that O2 cannot competitively adsorb on the Ir surface and be activated at low temperatures, thereby prohibiting the conversion of CO to CO2. Therefore, weakening the adsorption strength of CO and/or promoting the activation of O2 at lower temperatures have become the crucial steps. Ferric oxide has proven effective for O2 activation and has been used extensively as an additive to Pt-based catalysts. Recently, we have designed a bimetallic catalyst by adding FeOx to a supported Ir catalyst, and the activity for the PROX reaction was improved. Further study of the catalytic reactions showed that the reaction rate of CO oxidation correlated well with the presence and amount of Fe, suggesting that Fe sites were indeed the active sites for O2 activation. [13] The coordinatively unsaturated Fe center was also recently identified as the site to activate O2, which helped the design of a highly active FeOx/Pt/SiO2 catalyst to totally convert CO at room temperature. All of these studies suggest that the presence of low-valent Fe (Fe) played a decisive role in improving the PROX activity, thus providing a clue for obtaining a highly effective Ir-based catalyst by incorporating materials containing, or easily forming, Fe species. Ferric hydroxide (Fe(OH)x) is a novel support material which has recently been adopted to stabilize various types of metal species for CO oxidation. It possesses a large surface area and a large amount of OH groups; these unique properties make Fe(OH)x a good candidate for generating highly dispersed metal clusters or even single-atom catalysts. Furthermore, the longer Fe O bonds in Fe(OH)x (compared to those in Fe2O3) make it easier to form Fe 2+


Journal of the American Chemical Society | 2016

Strong Metal-Support Interactions between Gold Nanoparticles and Nonoxides.

Hailian Tang; Jiake Wei; Fei Liu; Botao Qiao; Xiaoli Pan; Lin Li; Jingyue Liu; Junhu Wang; Tao Zhang

The strong metal-support interaction (SMSI) is of great importance for supported catalysts in heterogeneous catalysis. We report the first example of SMSI between Au nanoparticles (NPs) and hydroxyapatite (HAP), a nonoxide. The reversible encapsulation of Au NPs by HAP support, electron transfer, and changes in CO adsorption are identical to the classic SMSI except that the SMSI of Au/HAP occurred under oxidative condition; the opposite condition for the classical SMSI. The SMSI of Au/HAP not only enhanced the sintering resistance of Au NPs upon calcination but also improved their selectivity and reusability in liquid-phase reaction. It was found that the SMSI between Au and HAP is general and could be extended to other phosphate-supported Au systems such as Au/LaPO4. This new discovery may open a new way to design and develop highly stable supported Au catalysts with controllable activity and selectivity.


Angewandte Chemie | 2016

Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures

Hongling Guan; Jian Lin; Botao Qiao; Xiaofeng Yang; Lin Li; Shu Miao; Jingyue Liu; Aiqin Wang; Xiaodong Wang; Tao Zhang

The discovery that gold catalysts could be active for CO oxidation at cryogenic temperatures has ignited much excitement in nanocatalysis. Whether the alternative Pt group metal (PGM) catalysts can exhibit such high performance is an interesting research issue. So far, no PGM catalyst shows activity for CO oxidation at cryogenic temperatures. In this work, we report a sub-nano Rh/TiO2 catalyst that can completely convert CO at 223 K. This catalyst exhibits at least three orders of magnitude higher turnover frequency (TOF) than the best Rh-based catalysts and comparable to the well-known Au/TiO2 for CO oxidation. The specific size range of 0.4-0.8 nm Rh clusters is critical to the facile activation of O2 over the Rh-TiO2 interface in a form of Rh-O-O-Ti (superoxide). This superoxide is ready to react with the CO adsorbed on TiO2 sites at cryogenic temperatures.


Angewandte Chemie | 2016

Ultrastable Hydroxyapatite/Titanium‐Dioxide‐Supported Gold Nanocatalyst with Strong Metal–Support Interaction for Carbon Monoxide Oxidation

Hailian Tang; Fei Liu; Jiake Wei; Botao Qiao; Kunfeng Zhao; Yang Su; Changzi Jin; Lin Li; Jingyue Jimmy Liu; Junhu Wang; Tao Zhang

Supported Au nanocatalysts have attracted intensive interest because of their unique catalytic properties. Their poor thermal stability, however, presents a major barrier to the practical applications. Here we report an ultrastable Au nanocatalyst by localizing the Au nanoparticles (NPs) in the interfacial regions between the TiO2 and hydroxyapatite. This unique configuration makes the Au NP surface partially encapsulated due to the strong metal-support interaction and partially exposed and accessible by the reaction molecules. The strong interaction helps stabilizing the Au NPs while the partially exposed Au NP surface provides the active sites for reactions. Such a catalyst not only demonstrated excellent sintering resistance with high activity after calcination at 800 °C but also showed excellent durability that outperforms a commercial three-way catalyst in a simulated practical testing, suggesting great potential for practical applications.


Chinese Journal of Catalysis | 2016

Single atom gold catalysts for low-temperature CO oxidation

Botao Qiao; Jin Xia Liang; Aiqin Wang; Jingyue Liu; Tao Zhang

Low-temperature CO oxidation is important for both fundamental studies and practical applica-tions. Supported gold catalysts are generally regarded as the most active catalysts for low-temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5-5 nm. Only in the last few years have single-atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single-atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini-review, recent advances in the development of Au single-atom catalysts are discussed, with the aim of illustrating their unique catalytic features during CO oxidation.

Collaboration


Dive into the Botao Qiao's collaboration.

Top Co-Authors

Avatar

Tao Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Aiqin Wang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Lin Li

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Jingyue Liu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Jian Lin

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Wang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Youquan Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junhu Wang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Shu Miao

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge