Shu Miao
Dalian Institute of Chemical Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shu Miao.
Journal of the American Chemical Society | 2015
Dunfeng Gao; Hu Zhou; Jing Wang; Shu Miao; Fan Yang; Guoxiong Wang; Jian-guo Wang; Xinhe Bao
Size effect has been regularly utilized to tune the catalytic activity and selectivity of metal nanoparticles (NPs). Yet, there is a lack of understanding of the size effect in the electrocatalytic reduction of CO2, an important reaction that couples with intermittent renewable energy storage and carbon cycle utilization. We report here a prominent size-dependent activity/selectivity in the electrocatalytic reduction of CO2 over differently sized Pd NPs, ranging from 2.4 to 10.3 nm. The Faradaic efficiency for CO production varies from 5.8% at -0.89 V (vs reversible hydrogen electrode) over 10.3 nm NPs to 91.2% over 3.7 nm NPs, along with an 18.4-fold increase in current density. Based on the Gibbs free energy diagrams from density functional theory calculations, the adsorption of CO2 and the formation of key reaction intermediate COOH* are much easier on edge and corner sites than on terrace sites of Pd NPs. In contrast, the formation of H* for competitive hydrogen evolution reaction is similar on all three sites. A volcano-like curve of the turnover frequency for CO production within the size range suggests that CO2 adsorption, COOH* formation, and CO* removal during CO2 reduction can be tuned by varying the size of Pd NPs due to the changing ratio of corner, edge, and terrace sites.
Nature Communications | 2014
Haisheng Wei; Xiaoyan Liu; Aiqin Wang; Leilei Zhang; Botao Qiao; Xiaofeng Yang; Yanqiang Huang; Shu Miao; Jingyue Liu; Tao Zhang
The catalytic hydrogenation of nitroarenes is an environmentally benign technology for the production of anilines, which are key intermediates for manufacturing agrochemicals, pharmaceuticals and dyes. Most of the precious metal catalysts, however, suffer from low chemoselectivity when one or more reducible groups are present in a nitroarene molecule. Herein we report FeOx-supported platinum single-atom and pseudo-single-atom structures as highly active, chemoselective and reusable catalysts for hydrogenation of a variety of substituted nitroarenes. For hydrogenation of 3-nitrostyrene, the catalyst yields a TOF of ~1,500 h(-1), 20-fold higher than the best result reported in literature, and a selectivity to 3-aminostyrene close to 99%, the best ever achieved over platinum group metals. The superior performance can be attributed to the presence of positively charged platinum centres and the absence of Pt-Pt metallic bonding, both of which favour the preferential adsorption of nitro groups.
Science | 2016
F. Jiao; Jiayuan Li; Xiulian Pan; Jianping Xiao; Haobo Li; Hao Ma; Mingming Wei; Yang Pan; Z. Zhou; Mingrun Li; Shu Miao; Yifeng Zhu; D. Xiao; T. He; J. Yang; Fei Qi; Qiang Fu; Xinhe Bao
Small olefins from syngas The conversion of coal or natural gas to liquid fuels or chemicals often proceeds through the production of CO and H2. This mixture, known as syngas, is then converted to hydrocarbons with Fischer-Tropsch catalysts. For the light olefins (ethylene to butylenes) needed for chemical and polymer synthesis, conventional catalysts are mechanistically limited to <60% conversion and deactivate through carbon buildup. Jiao et al. developed a bifunctional catalyst that achieves higher conversions and avoids deactivation (see the Perspective by de Jong). A zinc-chromium oxide creates ketene intermediates that are then coupled over a zeolite. Science, this issue p. 1065, see also p. 1030 A composite catalyst circumvents conventional limitations on the Fischer-Tropsch synthesis of light olefins from syngas. [Also see Perspective by de Jong] Although considerable progress has been made in direct synthesis gas (syngas) conversion to light olefins (C2=–C4=) via Fischer-Tropsch synthesis (FTS), the wide product distribution remains a challenge, with a theoretical limit of only 58% for C2–C4 hydrocarbons. We present a process that reaches C2=–C4= selectivity as high as 80% and C2–C4 94% at carbon monoxide (CO) conversion of 17%. This is enabled by a bifunctional catalyst affording two types of active sites with complementary properties. The partially reduced oxide surface (ZnCrOx) activates CO and H2, and C−C coupling is subsequently manipulated within the confined acidic pores of zeolites. No obvious deactivation is observed within 110 hours. Furthermore, this composite catalyst and the process may allow use of coal- and biomass-derived syngas with a low H2/CO ratio.
Journal of Materials Chemistry | 2014
Jing Wang; Dunfeng Gao; Guoxiong Wang; Shu Miao; Haihua Wu; Jiayuan Li; Xinhe Bao
The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are important electrocatalytic processes in water electrolyzers. Identifying efficient non-precious metal catalysts for HER and OER remains a great challenge for applications in different kinds of electrolyzers. Herein, we report that cobalt nanoparticles encapsulated in nitrogen-doped carbon (Co@N–C) show high activity and durability for HER in a wide pH range and for OER in alkaline medium as a bifunctional catalyst. The HER and OER activities of Co@N–C are higher than those of multiwall carbon nanotube and iron nanoparticles encapsulated in nitrogen-doped carbon with a similar content of nitrogen. Electrolyzer prototypes using Nafion NRE-212 as electrolyte membrane and Co@N–C as cathode or anode catalyst are constructed, showing potential practical applications in water splitting.
Energy and Environmental Science | 2016
Haihua Wu; Haobo Li; Xinfei Zhao; Qingfei Liu; Jing Wang; Jianping Xiao; Songhai Xie; Rui Si; Fan Yang; Shu Miao; Xiaoguang Guo; Guoxiong Wang; Xinhe Bao
A coordinatively unsaturated copper–nitrogen architecture in copper metalloenzymes is essential for its capability to catalyze the oxygen reduction reaction (ORR). However, the stabilization of analogous active sites in realistic catalysts remains a key challenge. Herein, we report a facile route to synthesize highly doped and exposed copper(I)–nitrogen (Cu(I)–N) active sites within graphene (Cu–N©C) by pyrolysis of coordinatively saturated copper phthalocyanine, which is inert for the ORR, together with dicyandiamide. Cu(I)–N is identified as the active site for catalyzing the ORR by combining physicochemical and electrochemical studies, as well as density function theory calculations. The graphene matrix could stabilize the high density of Cu(I)–N active sites with a copper loading higher than 8.5 wt%, while acting as the electron-conducting path. The ORR activity increases with the specific surface area of the Cu–N©C catalysts due to more exposed Cu(I)–N active sites. The optimum Cu–N©C catalyst demonstrates a high ORR activity and stability, as well as an excellent performance and stability in zinc–air batteries with ultralow catalyst loading.
Journal of the American Chemical Society | 2013
Chi Yang; Bin Zhou; Shu Miao; Chunyan Yang; Bing Cai; Wen-Hua Zhang; Xin Xu
A facile solution-phase route was developed to synthesize a family of monodisperse Cu2Ge(S(3-x)Se(x)) alloyed nanocrystals (NCs) with controlled composition across the entire range (0 ≤ x ≤ 3). The band gaps of the resultant NCs can be engineered by tuning the compositions with a nearly linear relationship between them. The band structures of the NCs were studied by cyclic voltammetry and UV-vis absorption spectroscopy. The conducting behavior was revealed to be p-type for these NCs by photoelectrochemical measurements. Their photovoltaic applicability was finally assessed by fabricating solar cells with the Cu2Ge(S2Se) NCs as light harvester and CdS nanorods as electron conducting materials.
Angewandte Chemie | 2016
Hongling Guan; Jian Lin; Botao Qiao; Xiaofeng Yang; Lin Li; Shu Miao; Jingyue Liu; Aiqin Wang; Xiaodong Wang; Tao Zhang
The discovery that gold catalysts could be active for CO oxidation at cryogenic temperatures has ignited much excitement in nanocatalysis. Whether the alternative Pt group metal (PGM) catalysts can exhibit such high performance is an interesting research issue. So far, no PGM catalyst shows activity for CO oxidation at cryogenic temperatures. In this work, we report a sub-nano Rh/TiO2 catalyst that can completely convert CO at 223 K. This catalyst exhibits at least three orders of magnitude higher turnover frequency (TOF) than the best Rh-based catalysts and comparable to the well-known Au/TiO2 for CO oxidation. The specific size range of 0.4-0.8 nm Rh clusters is critical to the facile activation of O2 over the Rh-TiO2 interface in a form of Rh-O-O-Ti (superoxide). This superoxide is ready to react with the CO adsorbed on TiO2 sites at cryogenic temperatures.
Journal of the American Chemical Society | 2017
Shengyang Wang; Yuying Gao; Shu Miao; Taifeng Liu; Linchao Mu; Rengui Li; Fengtao Fan; Can Li
Plasmonic photocatalysis, stemming from the effective light absorbance and confinement of surface plasmons, provides a pathway to enhance solar energy conversion. Although the plasmonic hot electrons in water reduction have been extensively studied, exactly how the plasmonic hot holes participate in the water splitting reaction has not yet been well understood. In particular, where the plasmonic hot holes participate in water oxidation is still illusive. Herein, taking Au/TiO2 as a plasmonic photocatalyst prototype, we investigated the plasmonic hot holes involved in water oxidation. The reaction sites are positioned by photodeposition together with element mapping by electron microscopy, while the distribution of holes is probed by surface photovoltage imaging with Kelvin probe force microscopy. We demonstrated that the plasmonic holes are mainly concentrated near the gold-semiconductor interface, which is further identified as the reaction site for plasmonic water oxidation. Density functional theory also corroborates these findings by revealing the promotion role of interfacial structure (Ti-O-Au) for oxygen evolution. Furthermore, the interfacial effect on plasmonic water oxidation is validated by other Au-semiconductor photocatalytic systems (Au/SrTiO3, Au/BaTiO3, etc.).
Nano Research | 2014
Jiayuan Li; Guoxiong Wang; Jing Wang; Shu Miao; Mingming Wei; Fan Yang; Liang Yu; Xinhe Bao
A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that Pt3Fe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a Pt3Fe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst.
Chemsuschem | 2016
Jia Wang; Xiaochen Zhao; Nian Lei; Lin Li; Leilei Zhang; Shutao Xu; Shu Miao; Xiaoli Pan; Aiqin Wang; Tao Zhang
Single/pseudo-single atom Pt catalyst was prepared on mesoporous WOx . The large surface area and abundant oxygen vacancies of WOx improve the Pt dispersion and stabilize the Pt isolation. This newly prepared catalyst exhibited outstanding hydrogenolysis activity under 1 MPa H2 pressure with a very high space-time yield towards 1,3-propanediol (3.78 g gPt (-1) h(-1) ) in Pt-W catalysts. The highly isolated Pt structure is thought to contribute to the excellent H2 dissociation capacity over Pt/WOx . The high selectivity towards 1,3-propanediol is attributed to the heterolytic dissociation of H2 at the interface of Pt and WOx (providing specific Brønsted acid sites and the concerted dehydration-hydrogenation reaction) and the bond formation between glycerol and WOx , which favors/stabilizes the formation of a secondary carbocation intermediate as well as triggers the redox cycle of the W species (W(6+) ⇄W(5+) ).