Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boubacar Kante is active.

Publication


Featured researches published by Boubacar Kante.


Nature Materials | 2015

Predicting nonlinear properties of metamaterials from the linear response

Kevin O’Brien; Haim Suchowski; Junsuk Rho; Alessandro Salandrino; Boubacar Kante; Xiaobo Yin; Xiang Zhang

The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Millers Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.


Nano Letters | 2012

Heterojunction Silicon Microwire Solar Cells

Majid Gharghi; Ehsanollah Fathi; Boubacar Kante; Siva Sivoththaman; Xiang Zhang

We report radial heterojunction solar cells of amorphous silicon on crystalline silicon microwires with high surface passivation. While the shortened collection path is exploited to increase the photocurrent, proper choice of the wire radius and the highly passivated surface prevent drastic decrease in the voltage due to high surface-to-volume ratio. The heterojunction is formed by depositing a ∼12-16 nm of amorphous silicon on crystalline silicon wires of radius approximately equal to minority carrier diffusion length (∼10 μm). In spite of very short carrier lifetime (<1 μs), the microwire array devices generate photocurrent of ∼30 mA/cm(2), and the same time, voltages close to 600 mV are achieved, leading to efficiency in excess of 12% in extremely short carrier lifetime silicon. We also find that formation of nanocrystallites of silicon in the deposited film results in loss of the expected passivation.


Nature | 2017

Lasing action from photonic bound states in continuum

Ashok Kodigala; Thomas Lepetit; Qing Gu; Babak Bahari; Yeshaiahu Fainman; Boubacar Kante

In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light–matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.


Nature Nanotechnology | 2014

Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution.

Sui Yang; Xingjie Ni; Xiaobo Yin; Boubacar Kante; Peng Zhang; Jia Zhu; Yuan Wang; Xiang Zhang

Thermodynamically driven self-assembly offers a direct route to organize individual nanoscopic components into three-dimensional structures over a large scale. The most thermodynamically favourable configurations, however, may not be ideal for some applications. In plasmonics, for instance, nanophotonic constructs with non-trivial broken symmetries can display optical properties of interest, such as Fano resonance, but are usually not thermodynamically favoured. Here, we present a self-assembly route with a feedback mechanism for the bottom-up synthesis of a new class of symmetry-breaking optical metamaterials. We self-assemble plasmonic nanorod dimers with a longitudinal offset that determines the degree of symmetry breaking and its electromagnetic response. The clear difference in plasmonic resonance profiles of nanorod dimers in different configurations enables high spectra selectivity. On the basis of this plasmonic signature, our self-assembly route with feedback mechanism promotes the assembly of desired metamaterial structures through selective excitation and photothermal disassembly of unwanted assemblies in solution. In this fashion, our method can selectively reconfigure and homogenize the properties of the dimer, leading to highly monodispersed aqueous metamaterials with tailored symmetries and electromagnetic responses.


Optics Express | 2008

Infrared cloaking based on the electric response of split ring resonators

Boubacar Kante; André de Lustrac; J.-M. Lourtioz; Shah Nawaz Burokur

Electromagnetic cloak was recently demonstrated in the microwave domain using a metamaterial structure made of metallic split ring resonators (SRR) arranged in a cylindrical geometry. The SRRs were designed to provide a magnetic response that varied in an appropriate manner with the radial coordinate. In the present work, we propose an electromagnetic cloak, which exploits the electric response of gold SRRs instead of their magnetic response. Numerical simulations performed at infrared frequencies (~100 THz) reveal low loss and weak impedance mismatch, thereby proving the interest in using SRRs as ???universal??? atoms in the design of metamaterials. We also show that SRRs can be ultimately replaced by simple cut wires for the construction of approximate electromagnetic cloaks whose dielectric permittivity is the only parameter varying with space coordinates.


Science | 2017

Nonreciprocal lasing in topological cavities of arbitrary geometries

Babak Bahari; Abdoulaye Ndao; Felipe Vallini; Abdelkrim El Amili; Yeshaiahu Fainman; Boubacar Kante

Topological lasing Resonant cavities that confine light are crucial components of lasers. Typically, these cavities are designed to high specification to get the best possible output. That, however, can limit their integration into photonic devices and optical circuits. Bahari et al. fabricated resonant cavities of arbitrary shape within a hybrid photonic crystal structure. The confinement of light to topologically protected edge states resulted in lasing at communication wavelengths. Relaxing the resonant cavity design criteria should be useful in designing photonic devices. Science, this issue p. 636 Resonant cavities of arbitrary shape can be designed to provide lasing into topically protected edge states. Resonant cavities are essential building blocks governing many wave-based phenomena, but their geometry and reciprocity fundamentally limit the integration of optical devices. We report, at telecommunication wavelengths, geometry-independent and integrated nonreciprocal topological cavities that couple stimulated emission from one-way photonic edge states to a selected waveguide output with an isolation ratio in excess of 10 decibels. Nonreciprocity originates from unidirectional edge states at the boundary between photonic structures with distinct topological invariants. Our experimental demonstration of lasing from topological cavities provides the opportunity to develop complex topological circuitry of arbitrary geometries for the integrated and robust generation and transport of photons in classical and quantum regimes.


Progress in Electromagnetics Research-pier | 2015

Extremely Thin Dielectric Metasurface for Carpet Cloaking

Li Yi Hsu; Thomas Lepetit; Boubacar Kante

We demonstrate a novel and simple approach to cloaking a scatterer on a ground plane. We use an extremely thin dielectric metasurface ({\lambda}/12) to reshape the wavefronts distorted by a scatterer in order to mimic the reflection pattern of a flat ground plane. To achieve such carpet cloaking, the reflection angle has to be equal to the incident angle everywhere on the scatterer. We use a graded metasurface and calculate the required phase gradient to achieve cloaking. Our metasurface locally provides additional phase to the wavefronts to compensate for the phase difference amongst light paths induced by the geometrical distortion. We design our metasurface in the microwave range using highly sub-wavelength dielectric resonators. We verify our design by full-wave time-domain simulations using micro-structured resonators and show that results match theory very well. This approach can be applied to hide any scatterer on a ground plane not only at microwave frequencies, but also at higher frequencies up to the near infrared.


Applied Physics Letters | 2009

Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index

Shah Nawaz Burokur; Alexandre Sellier; Boubacar Kante; André de Lustrac

Metamaterials made of exclusively metallic cut wire pairs have been experimentally demonstrated to exhibit a negative refractive index at optical frequencies. However, other related works have not shown a negative index. In this paper, we propose an easy way to manipulate the magnetic and electric resonances of these metamaterials to produce a negative index. We show that judiciously breaking the symmetry of the structure allows tuning of both resonances leading to an overlapping between the negative permeability and negative permittivity regions. Numerical and experimental parametric studies of several cut wire pairs metamaterials are presented to validate our method at microwave frequencies.


Optics Express | 2009

Negative refractive index metamaterials using only metallic cut wires

Alexandre Sellier; Shah Nawaz Burokur; Boubacar Kante; André de Lustrac

We present, design and analyze a novel planar Left-Handed (LH) metamaterial at microwave frequencies. This metamaterial is composed of only metallic cut wires and is used under normal-to-plane incidence. Using Finite Element Method (FEM) based simulations and microwave experiments, we have investigated the material properties of the structure. Simultaneous negative values are observed for the permittivity epsilon and permeability mu by the inversion method from the transmission and reflection responses. A negative index n is verified in a bulk prism engineered by stacking several layers of the metamaterial. Our work demonstrates the feasibility of a LH metamaterial composed of only cut wires.


Optics Letters | 2012

Reflective interferometry for optical metamaterial phase measurements

Kevin O’Brien; Norberto D. Lanzillotti-Kimura; Haim Suchowski; Boubacar Kante; Yong-Shik Park; Xiaobo Yin; Xiang Zhang

The unambiguous determination of optical refractive indices of metamaterials is a challenging task for device applications and the study of new optical phenomena. We demonstrate here simple broadband phase measurements of metamaterials using spectrally and spatially resolved interferometry. We study the phase response of a π-shaped metamaterial known to be an analog to electromagnetically induced transparency. The measured broadband interferograms give the phase delay or advance produced by the metamaterial in a single measurement. The presented technique offers an effective way of characterizing optical metamaterials including nonlinear and gain-metamaterial systems.

Collaboration


Dive into the Boubacar Kante's collaboration.

Top Co-Authors

Avatar

Thomas Lepetit

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashok Kodigala

University of California

View shared research outputs
Top Co-Authors

Avatar

Babak Bahari

University of California

View shared research outputs
Top Co-Authors

Avatar

Abdoulaye Ndao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liyi Hsu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe Vallini

University of California

View shared research outputs
Top Co-Authors

Avatar

Junhee Park

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge