Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boumediene Bouzahzah is active.

Publication


Featured researches published by Boumediene Bouzahzah.


Journal of Biological Chemistry | 2000

The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3beta and cAMP-responsive element-binding protein-dependent pathways.

Mark D'Amico; James Hulit; Derek F. Amanatullah; Brian T. Zafonte; Chris Albanese; Boumediene Bouzahzah; Maofu Fu; Leonard H. Augenlicht; Lawrence A. Donehower; Ken-Ichi Takemaru; Randall T. Moon; Roger J. Davis; Michael P. Lisanti; Michael Shtutman; Jacob Zhurinsky; Avri Ben-ze'ev; Armelle Troussard; Shoukat Dedhar; Richard G. Pestell

The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the pRB tumor suppressor protein. Cyclin D1 is overexpressed in 20–30% of human breast tumors and is induced both by oncogenes including those for Ras, Neu, and Src, and by the β-catenin/lymphoid enhancer factor (LEF)/T cell factor (TCF) pathway. The ankyrin repeat containing serine-threonine protein kinase, integrin-linked kinase (ILK), binds to the cytoplasmic domain of β1 and β3integrin subunits and promotes anchorage-independent growth. We show here that ILK overexpression elevates cyclin D1 protein levels and directly induces the cyclin D1 gene in mammary epithelial cells. ILK activation of the cyclin D1 promoter was abolished by point mutation of a cAMP-responsive element-binding protein (CREB)/ATF-2 binding site at nucleotide −54 in the cyclin D1 promoter, and by overexpression of either glycogen synthase kinase-3β (GSK-3β) or dominant negative mutants of CREB or ATF-2. Inhibition of the PI 3-kinase and AKT/protein kinase B, but not of the p38, ERK, or JNK signaling pathways, reduced ILK induction of cyclin D1 expression. ILK induced CREB transactivation and CREB binding to the cyclin D1 promoter CRE. Wnt-1 overexpression in mammary epithelial cells induced cyclin D1 mRNA and targeted overexpression of Wnt-1 in the mammary gland of transgenic mice increased both ILK activity and cyclin D1 levels. We conclude that the cyclin D1 gene is regulated by the Wnt-1 and ILK signaling pathways and that ILK induction of cyclin D1 involves the CREB signaling pathway in mammary epithelial cells.


American Journal of Pathology | 2003

Absence of Caveolin-1 Sensitizes Mouse Skin to Carcinogen-Induced Epidermal Hyperplasia and Tumor Formation

Franco Capozza; Terence M. Williams; William Schubert; Steve A. McClain; Boumediene Bouzahzah; Federica Sotgia; Michael P. Lisanti

Caveolin-1 is the principal protein component of caveolae membrane domains, which are located at the cell surface in most cell types. Evidence has accumulated suggesting that caveolin-1 may function as a suppressor of cell transformation in cultured cells. The human CAV-1 gene is located at a putative tumor suppressor locus (7q31.1/D7S522) and a known fragile site (FRA7G) that is deleted in a variety of epithelial-derived tumors. Mechanistically, caveolin-1 is known to function as a negative regulator of the Ras-p42/44 MAP kinase cascade and as a transcriptional repressor of cyclin D1, possibly explaining its transformation suppressor activity in cultured cells. However, it remains unknown whether caveolin-1 functions as a tumor suppressor gene in vivo. Here, we examine the tumor suppressor function of caveolin-1 using Cav-1 (-/-) null mice as a model system. Cav-1 null mice and their wild-type counterparts were subjected to carcinogen-induced skin tumorigenesis, using 7,12-dimethylbenzanthracene (DMBA). Mice were monitored weekly for the development of tumors. We demonstrate that Cav-1 null mice are dramatically more susceptible to carcinogen-induced tumorigenesis, as they develop skin tumors at an increased rate. After 16 weeks of DMBA-treatment, Cav-1 null mice showed a 10-fold increase in tumor incidence, a 15-fold increase in tumor number per mouse (multiplicity), and a 35-fold increase in tumor area per mouse, as compared with wild-type littermate mice. Moreover, before the development of tumors, DMBA-treatment induced severe epidermal hyperplasia in Cav-1 null mice. Both the basal cell layer and the suprabasal cell layers were expanded in treated Cav-1 null mice, as evidenced by immunostaining with cell-type specific differentiation markers (keratin-10 and keratin-14). In addition, cyclin D1 and phospho-ERK1/2 levels were up-regulated during epidermal hyperplasia, suggesting a possible mechanism for the increased susceptibility of Cav-1 null mice to tumorigenesis. However, the skin of untreated Cav-1 null mice appeared normal, without any evidence of epidermal hyperplasia, despite the fact that Cav-1 null keratinocytes failed to express caveolin-1 and showed a complete ablation of caveolae formation. Thus, Cav-1 null mice require an appropriate oncogenic stimulus, such as DMBA treatment, to reveal their increased susceptibility toward epidermal hyperplasia and skin tumor formation. Our results provide the first genetic evidence that caveolin-1 indeed functions as a tumor suppressor gene in vivo.


Journal of Biological Chemistry | 2000

Caveolin-1 Inhibits Epidermal Growth Factor-stimulated Lamellipod Extension and Cell Migration in Metastatic Mammary Adenocarcinoma Cells (MTLn3) TRANSFORMATION SUPPRESSOR EFFECTS OF ADENOVIRUS-MEDIATED GENE DELIVERY OF CAVEOLIN-1

Wei Zhang; Babak Razani; Yoram Altschuler; Boumediene Bouzahzah; Keith E. Mostov; Richard G. Pestell; Michael P. Lisanti

Caveolin-1 is a principal component of caveolae membranes that may function as a transformation suppressor. For example, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (D7S522; 7q31.1) that is deleted in human cancers, including mammary carcinomas. However, little is known about the role of caveolins in regulating cell movement, a critical parameter in determining metastatic potential. Here, we examine the role of caveolin-1 in cell movement. For this purpose, we employed an established cellular model, MTLn3, a metastatic rat mammary adenocarcinoma cell line. In this system, epidermal growth factor (EGF) stimulation induces rapid lamellipod extension and cell migration. Interestingly, we find that MTLn3 cells fail to express detectable levels of endogenous caveolin-1. To restore caveolin-1 expression in MTLn3 cells efficiently, we employed an inducible adenoviral gene delivery system to achieve tightly controlled expression of caveolin-1. We show here that caveolin-1 expression in MTLn3 cells inhibits EGF-stimulated lamellipod extension and cell migration and blocks their anchorage-independent growth. Under these conditions, EGF-induced activation of the p42/44 mitogen-activated protein kinase cascade is also blunted. Our results suggest that caveolin-1 expression in motile MTLn3 cells induces a non-motile phenotype.


International Journal for Parasitology | 2001

The role of endothelin in the pathogenesis of Chagas' disease.

Stefka B. Petkova; Huan Huang; Stephen M. Factor; Richard G. Pestell; Boumediene Bouzahzah; Linda A. Jelicks; Louis M. Weiss; Stephen A. Douglas; Murray Wittner; Herbert B. Tanowitz

Infection with Trypanosoma cruzi causes a generalised vasculitis of several vascular beds. This vasculopathy is manifested by vasospasm, reduced blood flow, focal ischaemia, platelet thrombi, increased platelet aggregation and elevated plasma levels of thromboxane A(2) and endothelin-1. In the myocardium of infected mice, myonecrosis and a vasculitis of the aorta, coronary artery, smaller myocardial vessels and the endocardial endothelium are observed. Immunohistochemistry studies employing anti-endothelin-1 antibody revealed increased expression of endothelin-1, most intense in the endocardial and vascular endothelium. Elevated levels of mRNA for prepro endothelin-1, endothelin converting enzyme and endothelin-1 were observed in the infected myocardium. When T. cruzi-infected mice were treated with phosphoramidon, an inhibitor of endothelin converting enzyme, there was a decrease in heart size and severity of pathology. Mitogen-activated protein kinases and the transcription factor activator-protein-1 regulate the expression of endothelin-1. Therefore, we examined the activation of mitogen-activated protein kinases in the myocardium by T. cruzi. Western blot demonstrated an extracellular signal regulated kinase. In addition, the activator-protein-1 DNA binding activity, as determined by electrophoretic mobility shift assay, was increased. Increased expression of cyclins A and cyclin D1 was observed in the myocardium, and immunohistochemistry studies revealed that interstitial cells and vascular and endocardial endothelial cells stained intensely with antibodies to these cyclins. These data demonstrate that T. cruzi infection of the myocardium activates extracellular signal regulated kinase, activator-protein-1, endothelin-1, and cyclins. The activation of these pathways is likely to contribute to the pathogenesis of chagasic heart disease. These experimental observations suggest that the vasculature plays a role in the pathogenesis of chagasic cardiomyopathy. Additionally, the identification of these pathways provides possible targets for therapeutic interventions to ameliorate or prevent the development of cardiomyopathy during T. cruzi infection.


Nuclear Medicine and Biology | 2002

Rhenium-188 as an alternative to Iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS)

Ekaterina Dadachova; Boumediene Bouzahzah; Lionel S. Zuckier; Richard G. Pestell

The sodium-iodide symporter (NIS), which transports iodine into the cell, is expressed in thyroid tissue and was recently found to be expressed in approximately 80% of human breast cancers but not in healthy breast tissue. These findings raised the possibility that therapeutics targeting uptake by NIS may be used for breast cancer treatment. To increase the efficacy of such therapy it would be ideal to identify a radioactive therapy with enhanced local emission. The feasibility of using the powerful beta-emitting radiometal (188)Re in the form of (188)Re-perrhenate was therefore compared with 131I for treatment of NIS-expressing mammary tumors. In the current studies, using a xenografted breast cancer model induced by the ErbB2 oncogene in nude mice, (188)Re-perrhenate exhibited NIS-dependent uptake into the mammary tumor. Dosimetry calculations in the mammary tumor demonstrate that (188)Re-perrhenate is able to deliver a dose 4.5 times higher than (131)I suggesting it may provide enhanced therapeutic efficacy.


Infection and Immunity | 2003

Activation of Transcription Factors AP-1 and NF-κB in Murine Chagasic Myocarditis

Huan Huang; Stefka B. Petkova; Alex W. Cohen; Boumediene Bouzahzah; John S.D. Chan; Jian nian Zhou; Stephen M. Factor; Louis M. Weiss; Mohan Krishnamachary; Shankar Mukherjee; Murray Wittner; Richard N. Kitsis; Richard G. Pestell; Michael P. Lisanti; Chris Albanese; Herbert B. Tanowitz

ABSTRACT The myocardium of CD1 mice was examined for the activation of signal transduction pathways leading to cardiac inflammation and subsequent remodeling during Trypanosoma cruzi infection (Brazil strain). The activity of three pathways of the mitogen-activated protein kinases (MAPKs) was determined. Immunoblotting revealed a persistent elevation of phosphorylated (activated) extracellular-signal-regulated kinase (ERK), which regulates cell proliferation. During infection there was a transient activation of p38 MAPK but no activation of Jun N-terminal kinase. Early targets of activated ERK, c-Jun and c-Fos, were elevated during infection, as demonstrated by semiquantitative reverse transcription-PCR. Immunostaining revealed that the endothelium and the interstitial cells were most intensely stained with antibodies to c-Jun and c-Fos. Soon after infection, AP-1 and NF-κB DNA binding activity was increased. Protein levels of cyclin D1, the downstream target of ERK and NF-κB, were induced during acute infection. Immunostaining demonstrated increased expression of cyclin D1 in the vascular and endocardial endothelium, inflammatory cells, and the interstitial areas. Increased expression of the cyclin D1-specific phosphorylated retinoblastoma protein (Ser780) was also evident. Immunoblotting and immunostaining also demonstrated increased expression of proliferating cellular nuclear antigen that was predominantly present in the inflammatory cells, interstitial areas (i.e., fibroblasts), and endothelium. These data demonstrate that T. cruzi infection results in activation of the ERK-AP-1 pathway and NF-κB. Cyclin D1 expression was also increased. These observations provide a molecular basis for the activation of pathways involved in cardiac remodeling in chagasic cardiomyopathy.


Journal of Gene Medicine | 2000

The application of a lentiviral vector for gene transfer in fetal human hepatocytes

Marisa H. Zahler; Adil N. Irani; Harmeet Malhi; Anne T. Reutens; Chris Albanese; Boumediene Bouzahzah; David A. Joyce; Sanjeev Gupta; Richard G. Pestell

The applications of traditional retroviral vectors are limited because proviral integrations into the host genome require DNA synthesis. Lentiviruses are considered to be advantageous because of their ability to infect non‐dividing cells.


Infection and Immunity | 2003

Activation of transcription factors AP-1 and NF-kappa B in murine Chagasic myocarditis.

Huan Huang; Stefka B. Petkova; Alex W. Cohen; Boumediene Bouzahzah; John S.D. Chan; Jian-nian Zhou; Stephen M. Factor; Louis M. Weiss; Mohan Krishnamachary; Shankar Mukherjee; Murray Wittner; Richard N. Kitsis; Richard G. Pestell; Michael P. Lisanti; Christopher Albanese; Herbert B. Tanowitz

ABSTRACT The myocardium of CD1 mice was examined for the activation of signal transduction pathways leading to cardiac inflammation and subsequent remodeling during Trypanosoma cruzi infection (Brazil strain). The activity of three pathways of the mitogen-activated protein kinases (MAPKs) was determined. Immunoblotting revealed a persistent elevation of phosphorylated (activated) extracellular-signal-regulated kinase (ERK), which regulates cell proliferation. During infection there was a transient activation of p38 MAPK but no activation of Jun N-terminal kinase. Early targets of activated ERK, c-Jun and c-Fos, were elevated during infection, as demonstrated by semiquantitative reverse transcription-PCR. Immunostaining revealed that the endothelium and the interstitial cells were most intensely stained with antibodies to c-Jun and c-Fos. Soon after infection, AP-1 and NF-κB DNA binding activity was increased. Protein levels of cyclin D1, the downstream target of ERK and NF-κB, were induced during acute infection. Immunostaining demonstrated increased expression of cyclin D1 in the vascular and endocardial endothelium, inflammatory cells, and the interstitial areas. Increased expression of the cyclin D1-specific phosphorylated retinoblastoma protein (Ser780) was also evident. Immunoblotting and immunostaining also demonstrated increased expression of proliferating cellular nuclear antigen that was predominantly present in the inflammatory cells, interstitial areas (i.e., fibroblasts), and endothelium. These data demonstrate that T. cruzi infection results in activation of the ERK-AP-1 pathway and NF-κB. Cyclin D1 expression was also increased. These observations provide a molecular basis for the activation of pathways involved in cardiac remodeling in chagasic cardiomyopathy.


Infection and Immunity | 2006

Trypanosoma cruzi infection induces proliferation of vascular smooth muscle cells.

Ghada S. Hassan; Shankar Mukherjee; Fnu Nagajyothi; Louis M. Weiss; Stefka B. Petkova; Cecilia J. de Almeida; Huan Huang; Mahalia S. Desruisseaux; Boumediene Bouzahzah; Richard G. Pestell; Chris Albanese; George J. Christ; Michael P. Lisanti; Herbert B. Tanowitz

ABSTRACT Trypanosoma cruzi infection causes cardiomyopathy and vasculopathy. Previous studies have demonstrated that infection of human umbilical vein endothelial and smooth muscle cells resulted in activation of extracellular signal-regulated kinase (ERK). In the present study, smooth muscle cells were infected with trypomastigotes, and immunoblot analysis revealed an increase in the expression of cyclin D1 and proliferating cell nuclear antigen (PCNA), important mediators of smooth muscle cell proliferation. Interestingly, after infection, the expression of caveolin-1 was reduced in both human umbilical vein endothelial cells and smooth muscle cells. Immunoblot and immunohistochemical analyses of lysates of carotid arteries obtained from infected mice revealed increased expression of PCNA, cyclin D1, its substrate, phospho-Rb (Ser780), and phospho-ERK1/2. The expression of the cyclin-dependent kinase inhibitor p21Cip1/Waf1, caveolin-1, and caveolin-3 was reduced in carotid arteries obtained from infected mice. There was an increase in the abundance of pre-pro-endothelin-1 mRNA in the carotid artery and aorta from infected mice. The ETA receptor was also elevated in infected arteries. ERK activates endothelin-1, which in turn exerts positive feedback activating ERK, and cyclin D1 is a downstream target of both endothelin-1 and ERK. There was significant incorporation of bromodeoxyuridine into smooth muscle cell DNA when treatment was with conditioned medium obtained from infected endothelial cells. Taken together, these data suggest that T. cruzi infection stimulates smooth muscle cell proliferation and is likely a result of the upregulation of the ERK-cyclin D1-endothelin-1 pathway.


Cancer Research | 2009

Loss of retinal cadherin facilitates mammary tumor progression and metastasis

Georgia Agiostratidou; Maomi Li; Kimita Suyama; Ines Badano; Rinat Keren; Su Chung; Amy Anzovino; James Hulit; Bin-Zhi Qian; Boumediene Bouzahzah; Eliseo A. Eugenin; Olivier Loudig; Greg R. Phillips; Joseph Locker; Rachel Hazan

The mammary epithelium is thought to be stabilized by cell-cell adhesion mediated mainly by E-cadherin (E-cad). Here, we show that another cadherin, retinal cadherin (R-cad), is critical for maintenance of the epithelial phenotype. R-cad is expressed in nontransformed mammary epithelium but absent from tumorigenic cell lines. In vivo, R-cad was prominently expressed in the epithelium of both ducts and lobules. In human breast cancer, R-cad was down-regulated with tumor progression, with high expression in ductal carcinoma in situ and reduced expression in invasive duct carcinomas. By comparison, E-cad expression persisted in invasive breast tumors and cell lines where R-cad was lost. Consistent with these findings, R-cad knockdown in normal mammary epithelium stimulated invasiveness and disrupted formation of acini despite continued E-cad expression. Conversely, R-cad overexpression in aggressive cell lines induced glandular morphogenesis and inhibited invasiveness, tumor formation, and lung colonization. R-cad also suppressed the matrix metalloproteinase 1 (MMP1), MMP2, and cyclooxygenase 2 gene expression associated with pulmonary metastasis. The data suggest that R-cad is an adhesion molecule of the mammary epithelium, which acts as a critical regulator of the normal phenotype. As a result, R-cad loss contributes to epithelial suppression and metastatic progression.

Collaboration


Dive into the Boumediene Bouzahzah's collaboration.

Top Co-Authors

Avatar

Richard G. Pestell

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Herbert B. Tanowitz

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Louis M. Weiss

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefka B. Petkova

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Huan Huang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shankar Mukherjee

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge