Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bowen Wang is active.

Publication


Featured researches published by Bowen Wang.


Cell Death and Disease | 2014

TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A

Xu Dong Shi; Lian-Wang Guo; Stephen Seedial; Yi Si; Bowen Wang; Toshio Takayama; Pasithorn A. Suwanabol; S. Ghosh; Daniel DiRenzo; Bo Liu; K.C. Kent

We have previously shown that in the presence of elevated Smad3, transforming growth factor-β (TGF-β) transforms from an inhibitor to a stimulant of vascular smooth muscle cell (SMC) proliferation and intimal hyperplasia (IH). Here we identify a novel mechanism through which TGF-β/Smad3 also exacerbates IH by inhibiting SMC apoptosis. We found that TGF-β treatment led to inhibition of apoptosis in rat SMCs following viral expression of Smad3. Conditioned media from these cells when applied to naive SMCs recapitulated this effect, suggesting an autocrine pathway through a secreted factor. Gene array of TGF-β/Smad3-treated cells revealed enhanced expression of vascular endothelial growth factor (VEGF), a known inhibitor of endothelial cell apoptosis. We then evaluated whether VEGF is the secreted mediator responsible for TGF-β/Smad3 inhibition of SMC apoptosis. In TGF-β/Smad3-treated cells, VEGF mRNA and protein as well as VEGF secretion were increased. Moreover, recombinant VEGF-A inhibited SMC apoptosis and a VEGF-A-neutralizing antibody reversed the inhibitory effect of conditioned media on SMC apoptosis. Stimulation of SMCs with TGF-β led to the formation of a complex of Smad3 and hypoxia-inducible factor-1α (HIF-1α) that in turn activated the VEGF-A promoter and transcription. In rat carotid arteries following arterial injury, Smad3 and VEGF-A expression were upregulated. Moreover, Smad3 gene transfer further enhanced VEGF expression as well as inhibited SMC apoptosis. Finally, blocking either the VEGF receptor or Smad3 signaling in injured carotid arteries abrogated the inhibitory effect of Smad3 on vascular SMC apoptosis. Taken together, our study reveals that following angioplasty, elevation of both TGF-β and Smad3 leads to SMC secretion of VEGF-A that functions as an autocrine inhibitor of SMC apoptosis. This novel pathway provides further insights into the role of TGF-β in the development of IH.


PLOS ONE | 2014

TGF-β/Smad3 Stimulates Stem Cell/Developmental Gene Expression and Vascular Smooth Muscle Cell De-Differentiation

Xudong Shi; Daniel DiRenzo; Lian-Wang Guo; Sarah Franco; Bowen Wang; Stephen Seedial; K. Craig Kent

Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.


Journal of the American Society for Mass Spectrometry | 2017

Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization

Qing Yu; Bowen Wang; Zhengwei Chen; Go Urabe; Matthew S. Glover; Xudong Shi; Lian-Wang Guo; K. Craig Kent; Lingjun Li

AbstractProtein glycosylation, one of the most heterogeneous post-translational modifications, can play a major role in cellular signal transduction and disease progression. Traditional mass spectrometry (MS)-based large-scale glycoprotein sequencing studies heavily rely on identifying enzymatically released glycans and their original peptide backbone separately, as there is no efficient fragmentation method to produce unbiased glycan and peptide product ions simultaneously in a single spectrum, and that can be conveniently applied to high throughput glycoproteome characterization, especially for N-glycopeptides, which can have much more branched glycan side chains than relatively less complex O-linked glycans. In this study, a redefined electron-transfer/higher-energy collision dissociation (EThcD) fragmentation scheme is applied to incorporate both glycan and peptide fragments in one single spectrum, enabling complete information to be gathered and great microheterogeneity details to be revealed. Fetuin was first utilized to prove the applicability with 19 glycopeptides and corresponding five glycosylation sites identified. Subsequent experiments tested its utility for human plasma N-glycoproteins. Large-scale studies explored N-glycoproteomics in rat carotid arteries over the course of restenosis progression to investigate the potential role of glycosylation. The integrated fragmentation scheme provides a powerful tool for the analysis of intact N-glycopeptides and N-glycoproteomics. We also anticipate this approach can be readily applied to large-scale O-glycoproteome characterization. Graphical Abstractᅟ


Circulation-cardiovascular Interventions | 2014

Halofuginone Stimulates Adaptive Remodeling and Preserves Re-Endothelialization in Balloon-Injured Rat Carotid Arteries

Lian-Wang Guo; Bowen Wang; Shakti A. Goel; Christopher Little; Toshio Takayama; Xu Dong Shi; Drew A. Roenneburg; Daniel DiRenzo; K. Craig Kent

Background—Three major processes, constrictive vessel remodeling, intimal hyperplasia (IH), and retarded re-endothelialization, contribute to restenosis after vascular reconstructions. Clinically used drugs inhibit IH but delay re-endothelialization and also cause constrictive remodeling. Here we have examined halofuginone, an herbal derivative, for its beneficial effects on vessel remodeling and differential inhibition of IH versus re-endothelialization. Methods and Results—Two weeks after perivascular application to balloon-injured rat common carotid arteries, halofuginone versus vehicle (n=6 animals) enlarged luminal area 2.14-fold by increasing vessel size (adaptive remodeling; 123%), reducing IH (74.3%) without inhibiting re-endothelialization. Consistent with its positive effect on vessel expansion, halofuginone reduced collagen type 1 (but not type 3) production in injured arteries as well as that from adventitial fibroblasts in vitro. In support of its differential effects on IH versus re-endothelialization, halofuginone produced greater inhibition of vascular smooth muscle cell versus endothelial cell proliferation at concentrations ≈50 nmol/L. Furthermore, halofuginone at 50 nmol/L effectively blocked Smad3 phosphorylation in smooth muscle cells, which is known to promote smooth muscle cell proliferation, migration, and IH, but halofuginone had no effect on phospho-Smad3 in endothelial cells. Conclusions—Periadventitial delivery of halofuginone dramatically increased lumen patency via adaptive remodeling and selective inhibition of IH without affecting endothelium recovery. Halofuginone is the first reported small molecule that has favorable effects on all 3 major processes involved in restenosis.


PLOS ONE | 2014

High-Throughput Screening Identifies Idarubicin as a Preferential Inhibitor of Smooth Muscle versus Endothelial Cell Proliferation

Shakti A. Goel; Lian-Wang Guo; Bowen Wang; Song Guo; Drew A. Roenneburg; Gene E. Ananiev; F. Michael Hoffmann; K. Craig Kent

Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis). Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC) proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC) lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS) format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection). We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.


EBioMedicine | 2015

BET Bromodomain Blockade Mitigates Intimal Hyperplasia in Rat Carotid Arteries

Bowen Wang; Mengxue Zhang; Toshio Takayama; Xudong Shi; Drew Alan Roenneburg; K. Craig Kent; Lian-Wang Guo

Background Intimal hyperplasia is a common cause of many vasculopathies. There has been a recent surge of interest in the bromo and extra-terminal (BET) epigenetic “readers” including BRD4 since the serendipitous discovery of JQ1(+), an inhibitor specific to the seemingly undruggable BET bromodomains. The role of the BET family in the development of intimal hyperplasia is not known. Methods We investigated the effect of BET inhibition on intimal hyperplasia using a rat balloon angioplasty model. Results While BRD4 was dramatically up-regulated in the rat and human hyperplastic neointima, blocking BET bromodomains with JQ1(+) diminished neointima in rats. Knocking down BRD4 with siRNA, or treatment with JQ1(+) but not the inactive enantiomer JQ1(−), abrogated platelet-derived growth factor (PDGF-BB)-stimulated proliferation and migration of primary rat aortic smooth muscle cells. This inhibitory effect of JQ1(+) was reproducible in primary human aortic smooth muscle cells. In human aortic endothelial cells, JQ1(+) prevented cytokine-induced apoptosis and impairment of cell migration. Furthermore, either BRD4 siRNA or JQ1(+) but not JQ1(−), substantially down-regulated PDGF receptor-α which, in JQ1(+)-treated arteries versus vehicle control, was also reduced. Conclusions Blocking BET bromodomains mitigates neointima formation, suggesting an epigenetic approach for effective prevention of intimal hyperplasia and associated vascular diseases.


Scientific Reports | 2017

Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol

Yichen Zhu; Toshio Takayama; Bowen Wang; Alycia Kent; Mengxue Zhang; Bernard Y.K. Binder; Go Urabe; Yatao Shi; Daniel DiRenzo; Shakti A. Goel; Yifan Zhou; Christopher B. Little; Drew A. Roenneburg; Xu Dong Shi; Lingjun Li; William L. Murphy; K. Craig Kent; Jianjuan Ke; Lian-Wang Guo

To date, there is no periadventitial drug delivery method available in the clinic to prevent restenotic failure of open vascular reconstructions. Resveratrol is a promising anti-restenotic natural drug but subject to low bioavailability when systemically administered. In order to reconcile these two prominent issues, we tested effects of periadventitial delivery of resveratrol on all three major pro-restenotic pathologies including intimal hyperplasia (IH), endothelium impairment, and vessel shrinkage. In a rat carotid injury model, periadventitial delivery of resveratrol either via Pluronic gel (2-week), or polymer sheath (3-month), effectively reduced IH without causing endothelium impairment and vessel shrinkage. In an in vitro model, primary smooth muscle cells (SMCs) were stimulated with elevated transforming growth factor (TGFβ) and its signaling protein Smad3, known contributors to IH. TGFβ/Smad3 up-regulated Kruppel-like factor (KLF5) protein, and SMC de-differentiation which was reversed by KLF5 siRNA. Furthermore, TGFβ/Smad3-stimulated KLF5 production and SMC de-differentiation were blocked by resveratrol via its inhibition of the Akt-mTOR pathway. Concordantly, resveratrol attenuated Akt phosphorylation in injured arteries. Taken together, periadventitial delivery of resveratrol produces durable inhibition of all three pro-restenotic pathologies — a rare feat among existing anti-restenotic methods. Our study suggests a potential anti-restenotic modality of resveratrol application suitable for open surgery.


Biomacromolecules | 2017

Unimolecular Micelle-Based Hybrid System for Perivascular Drug Delivery Produces Long-Term Efficacy for Neointima Attenuation in Rats

Guojun Chen; Xudong Shi; Bowen Wang; Ruosen Xie; Lian-Wang Guo; Shaoqin Gong; K. Craig Kent

At present, there are no clinical options for preventing neointima-caused (re)stenosis after open surgery such as bypass surgery for treating flow-limiting vascular disease. Perivascular drug delivery is a promising strategy, but in translational research, it remains a major challenge to achieve long-term (e.g., > 3 months) anti(re)stenotic efficacy. In this study, we engineered a unique drug delivery system consisting of durable unimolecular micelles, formed by single multiarm star amphiphilic block copolymers with only covalent bonds, and a thermosensitive hydrogel formed by a poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) triblock copolymer (abbreviated as triblock gel) that is stable for about 4 weeks in vitro. The drug-containing unimolecular micelles (UMs) suspended in Triblock gel were able to sustain rapamycin release for over 4 months. Remarkably, even 3 months after perivascular application of the rapamycin-loaded micelles in Triblock gel in the rat model, the intimal/medial area ratio (a restenosis measure) was still 80% inhibited compared to the control treated with empty micelle/gel (no drug). This could not be achieved by applying rapamycin in Triblock gel alone, which reduced the intimal/medial ratio only by 27%. In summary, we created a new UM/Triblock gel hybrid system for perivascular drug delivery, which produced a rare feat of 3-month restenosis inhibition in animal tests. This system exhibits a real potential for further translation into an anti(re)stenotic application with open surgery.


Stem Cells | 2016

Local CXCR4 Upregulation in the Injured Arterial Wall Contributes to Intimal Hyperplasia

Xudong Shi; Lian-Wang Guo; Stephen Seedial; Toshio Takayama; Bowen Wang; Mengxue Zhang; Sarah Franco; Yi Si; Mirnal A. Chaudhary; Bo Liu; K. Craig Kent

CXCR4 is a stem/progenitor cell surface receptor specific for the cytokine stromal cell‐derived factor‐1 (SDF‐1α). There is evidence that bone marrow‐derived CXCR4‐expressing cells contribute to intimal hyperplasia (IH) by homing to the arterial subintima which is enriched with SDF‐1α. We have previously found that transforming growth factor‐β (TGFβ) and its signaling protein Smad3 are both upregulated following arterial injury and that TGFβ/Smad3 enhances the expression of CXCR4 in vascular smooth muscle cells (SMCs). It remains unknown, however, whether locally induced CXCR4 expression in SM22 expressing vascular SMCs plays a role in neointima formation. Here, we investigated whether elevated TGFβ/Smad3 signaling leads to the induction of CXCR4 expression locally in the injured arterial wall, thereby contributing to IH. We found prominent CXCR4 upregulation (mRNA, 60‐fold; protein, 4‐fold) in TGFβ‐treated, Smad3‐expressing SMCs. Chromatin immunoprecipitation assays revealed a specific association of the transcription factor Smad3 with the CXCR4 promoter. TGFβ/Smad3 treatment also markedly enhanced SDF‐1α‐induced ERK1/2 phosphorylation as well as SMC migration in a CXCR4‐dependent manner. Adenoviral expression of Smad3 in balloon‐injured rat carotid arteries increased local CXCR4 levels and enhanced IH, whereas SMC‐specific depletion of CXCR4 in the wire‐injured mouse femoral arterial wall produced a 60% reduction in IH. Our results provide the first evidence that upregulation of TGFβ/Smad3 in injured arteries induces local SMC CXCR4 expression and cell migration, and consequently IH. The Smad3/CXCR4 pathway may provide a potential target for therapeutic interventions to prevent restenosis. Stem Cells 2016;34:2744–2757


Journal of Visualized Experiments | 2015

A Murine Model of Arterial Restenosis: Technical Aspects of Femoral Wire Injury

Toshio Takayama; Xudong Shi; Bowen Wang; Sarah Franco; Yifan Zhou; Daniel DiRenzo; Alycia Kent; Peter Hartig; Joshua Zent; Lian-Wang Guo

Cardiovascular disease caused by atherosclerosis is the leading cause of death in the developed world. Narrowing of the vessel lumen, due to atherosclerotic plaque development or the rupturing of established plaques, interrupts normal blood flow leading to various morbidities such as myocardial infarction and stroke. In the clinic endovascular procedures such as angioplasty are commonly performed to reopen the lumen. However, these treatments inevitably damage the vessel wall as well as the vascular endothelium, triggering an excessive healing response and the development of a neointimal plaque that extends into the lumen causing vessel restenosis (re-narrowing). Restenosis remains a major cause of failure of endovascular treatments for atherosclerosis. Thus, preclinical animal models of restenosis are vitally important for investigating the pathophysiological mechanisms as well as translational approaches to vascular interventions. Among several murine experimental models, femoral artery wire injury is widely accepted as the most suitable for studies of post-angioplasty restenosis because it closely resembles the angioplasty procedure that injures both endothelium and vessel wall. However, many researchers have difficulty utilizing this model due to its high degree of technical difficulty. This is primarily because a metal wire needs to be inserted into the femoral artery, which is approximately three times thinner than the wire, to generate sufficient injury to induce prominent neointima. Here, we describe the essential surgical details to effectively overcome the major technical difficulties of this model. By following the presented procedures, performing the mouse femoral artery wire injury becomes easier. Once familiarized, the whole procedure can be completed within 20 min.

Collaboration


Dive into the Bowen Wang's collaboration.

Top Co-Authors

Avatar

Lian-Wang Guo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

K. Craig Kent

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xudong Shi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Toshio Takayama

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mengxue Zhang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Daniel DiRenzo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sarah Franco

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Drew A. Roenneburg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Go Urabe

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Shakti A. Goel

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge