Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xudong Shi is active.

Publication


Featured researches published by Xudong Shi.


Journal of Vascular Surgery | 2013

Local drug delivery to prevent restenosis

Stephen M. Seedial; Soumojit Ghosh; R. Scott Saunders; Pasithorn A. Suwanabol; Xudong Shi; Bo Liu; K. Craig Kent

INTRODUCTION Despite significant advances in vascular biology, bioengineering, and pharmacology, restenosis remains a limitation to the overall efficacy of vascular reconstructions, both percutaneous and open. Although the pathophysiology of intimal hyperplasia is complex, a number of drugs and molecular tools have been identified that can prevent restenosis. Moreover, the focal nature of this process lends itself to treatment with local drug administration. This article provides a broad overview of current and future techniques for local drug delivery that have been developed to prevent restenosis after vascular interventions. METHODS A systematic electronic literature search using PubMed was performed for all accessible published articles through September 2012. In an effort to remain current, additional searches were performed for abstracts presented at relevant societal meetings, filed patents, clinical trials, and funded National Institutes of Health awards. RESULTS The efficacy of local drug delivery has been demonstrated in the coronary circulation with the current clinical use of drug-eluting stents. Until recently, however, drug-eluting stents were not found to be efficacious in the peripheral circulation. Further pursuit of intraluminal devices has led to the development of balloon-based technologies, with a recent surge in trials involving drug-eluting balloons. Early data appear encouraging, particularly for treatment of superficial femoral artery lesions, and several devices have recently received the Conformité Européene mark in Europe. Investigators have also explored the periadventitial application of biomaterials containing antirestenotic drugs, an approach that could be particularly useful for surgical bypass or endarterectomy. In the past, systemic drug delivery has been unsuccessful; however, there has been recent exploration of intravenous delivery of drugs designed specifically to target injured or reconstructed arteries. Our review revealed a multitude of additional interesting strategies, including >65 new patents issued during the past 2 years for approaches to local drug delivery focused on preventing restenosis. CONCLUSIONS Restenosis after intraluminal or open vascular reconstruction remains an important clinical problem. Success in the coronary circulation has not translated into solutions for the peripheral arteries. However, our literature review reveals a number of promising approaches, including drug-eluting balloons, periadventitial drug delivery, and targeted systemic therapies. These and other innovations suggest that the future is bright and that a solution for preventing restenosis in peripheral vessels will soon be at hand.


Journal of Vascular Surgery | 2012

Transforming growth factor-β increases vascular smooth muscle cell proliferation through the Smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways

Pasithorn A. Suwanabol; Stephen Seedial; Xudong Shi; Fan Zhang; Dai Yamanouchi; Drew A. Roenneburg; Bo Liu; K. Craig Kent

INTRODUCTION We have previously demonstrated that transforming growth factor-β (TGF-β) in the presence of elevated levels of Smad3, its primary signaling protein, stimulates rat vascular smooth muscle cell (VSMC) proliferation and intimal hyperplasia. The mechanism is partly through the nuclear exportation of phosphorylated cyclin-dependent kinase inhibitor p27. The objective of this study is to clarify the downstream pathways through which Smad3 produces its proliferative effect. Specifically, we evaluated the role of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TGF-β-induced VSMC proliferation. METHODS Cultured rat aortic VSMCs were incubated with TGF-β at varying concentrations and times, and phosphorylated ERK was measured by Western blotting. Smad3 was enhanced in VSMCs using an adenovirus expressing Smad3 or inhibited with small interfering RNA (siRNA). For in vivo experiments, male Sprague-Dawley rats underwent carotid balloon injury, followed by intraluminal infection with an adenovirus expressing Smad3. Arteries were harvested at 3 days and subjected to immunohistochemistry for Smad3, phospho-ERK MAPK, and proliferating cell nuclear antigen. RESULTS In cultured VSMCs, TGF-β induced activation and phosphorylation of ERK MAPK in a time-dependent and concentration-dependent manner. Overexpression of the signaling protein Smad3 enhanced TGF-β-induced activation of ERK MAPK, whereas inhibition of Smad3 with a siRNA blocked ERK MAPK phosphorylation in response to TGF-β. These data suggest that Smad3 acts as a signaling intermediate between TGF-β and ERK MAPK. Inhibition of ERK MAPK activation with PD98059 completely blocked the ability of TGF-β/Smad3 to stimulate VSMC proliferation, demonstrating the importance of ERK MAPK in this pathway. Immunoprecipitation of phospho-ERK MAPK and blotting with Smad3 revealed a physical association, suggesting that activation of ERK MAPK by Smad3 requires a direct interaction. In an in vivo rat carotid injury model, overexpression of Smad3 resulted in an increase in phosphorylated ERK MAPK as well as increased VSMC proliferation as measured by proliferating cell nuclear antigen. CONCLUSIONS Our findings demonstrate a mechanism through which TGF-β stimulates VSMC proliferation. Although TGF-β has been traditionally identified as an inhibitor of proliferation, our data suggest that TGF-β enhances VSMC proliferation through a Smad3/ERK MAPK signaling pathway. These findings at least partly explain the mechanism by which TGF-β enhances intimal hyperplasia. Knowledge of this pathway provides potential novel targets that may be used to prevent restenosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Protein Kinase C-Delta Mediates Adventitial Cell Migration Through Regulation of Monocyte Chemoattractant Protein-1 Expression in a Rat Angioplasty Model

Yi Si; Jun Ren; Pu Wang; Debra L. Rateri; Alan Daugherty; Xudong Shi; K. Craig Kent; Bo Liu

Objective—The adventitia is increasingly recognized as an important player during the development of intimal hyperplasia. However, the mechanism of adventitial cell recruitment to the subintimal space remains largely undefined. We have shown previously that gene transfer of protein kinase C-delta (PKC&dgr;) increases apoptosis of smooth muscle cells following balloon injury. In the current study, we investigated a potential role of PKC&dgr; in regulating the recruitment of adventitial cells. Methods and Results—Conditioned media from PKC&dgr;-overexpressing smooth muscle cells stimulated migration and CCR2 expression of adventitial fibroblasts through a MCP-1 dependent mechanism. Following balloon injury of rat carotid arteries, overexpression of PKC&dgr; in smooth muscle cells significantly increased MCP-1 and CCR2 expression and the number of adventitia-originated cells detected in the neointima. Administration of an anti-MCP–1 antibody markedly diminished the recruitment of adventitial cells. Combined PKC&dgr; overexpression and anti-MCP–1 inhibited intimal hyperplasia more effectively than either approach alone. Conclusion—Our data suggest that PKC&dgr; regulates recruitment of adventitial cells to the neointima via a mechanism involving upregulation of the MCP-1/CCR2 signaling axis in injured arteries. Blockage of MCP-1 while enhancing apoptosis may serve as a potential therapeutic strategy to attenuate intimal hyperplasia.


Journal of Vascular Surgery | 2012

Basic research studyFrom the Midwestern Vascular Surgical SocietyTransforming growth factor-β increases vascular smooth muscle cell proliferation through the Smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways

Pasithorn A. Suwanabol; Stephen Seedial; Xudong Shi; Fan Zhang; Dai Yamanouchi; Drew A. Roenneburg; Bo Liu; K. Craig Kent

INTRODUCTION We have previously demonstrated that transforming growth factor-β (TGF-β) in the presence of elevated levels of Smad3, its primary signaling protein, stimulates rat vascular smooth muscle cell (VSMC) proliferation and intimal hyperplasia. The mechanism is partly through the nuclear exportation of phosphorylated cyclin-dependent kinase inhibitor p27. The objective of this study is to clarify the downstream pathways through which Smad3 produces its proliferative effect. Specifically, we evaluated the role of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TGF-β-induced VSMC proliferation. METHODS Cultured rat aortic VSMCs were incubated with TGF-β at varying concentrations and times, and phosphorylated ERK was measured by Western blotting. Smad3 was enhanced in VSMCs using an adenovirus expressing Smad3 or inhibited with small interfering RNA (siRNA). For in vivo experiments, male Sprague-Dawley rats underwent carotid balloon injury, followed by intraluminal infection with an adenovirus expressing Smad3. Arteries were harvested at 3 days and subjected to immunohistochemistry for Smad3, phospho-ERK MAPK, and proliferating cell nuclear antigen. RESULTS In cultured VSMCs, TGF-β induced activation and phosphorylation of ERK MAPK in a time-dependent and concentration-dependent manner. Overexpression of the signaling protein Smad3 enhanced TGF-β-induced activation of ERK MAPK, whereas inhibition of Smad3 with a siRNA blocked ERK MAPK phosphorylation in response to TGF-β. These data suggest that Smad3 acts as a signaling intermediate between TGF-β and ERK MAPK. Inhibition of ERK MAPK activation with PD98059 completely blocked the ability of TGF-β/Smad3 to stimulate VSMC proliferation, demonstrating the importance of ERK MAPK in this pathway. Immunoprecipitation of phospho-ERK MAPK and blotting with Smad3 revealed a physical association, suggesting that activation of ERK MAPK by Smad3 requires a direct interaction. In an in vivo rat carotid injury model, overexpression of Smad3 resulted in an increase in phosphorylated ERK MAPK as well as increased VSMC proliferation as measured by proliferating cell nuclear antigen. CONCLUSIONS Our findings demonstrate a mechanism through which TGF-β stimulates VSMC proliferation. Although TGF-β has been traditionally identified as an inhibitor of proliferation, our data suggest that TGF-β enhances VSMC proliferation through a Smad3/ERK MAPK signaling pathway. These findings at least partly explain the mechanism by which TGF-β enhances intimal hyperplasia. Knowledge of this pathway provides potential novel targets that may be used to prevent restenosis.


PLOS ONE | 2014

Periadventitial application of rapamycin-loaded nanoparticles produces sustained inhibition of vascular restenosis.

Xudong Shi; Guojun Chen; Lian-Wang Guo; Yi Si; Men Zhu; Srikanth Pilla; Bo Liu; Shaoqin Gong; K. Craig Kent

Open vascular reconstructions frequently fail due to the development of recurrent disease or intimal hyperplasia (IH). This paper reports a novel drug delivery method using a rapamycin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs)/pluronic gel system that can be applied periadventitially around the carotid artery immediately following the open surgery. In vitro studies revealed that rapamycin dispersed in pluronic gel was rapidly released over 3 days whereas release of rapamycin from rapamycin-loaded PLGA NPs embedded in pluronic gel was more gradual over 4 weeks. In cultured rat vascular smooth muscle cells (SMCs), rapamycin-loaded NPs produced durable (14 days versus 3 days for free rapamycin) inhibition of phosphorylation of S6 kinase (S6K1), a downstream target in the mTOR pathway. In a rat balloon injury model, periadventitial delivery of rapamycin-loaded NPs produced inhibition of phospho-S6K1 14 days after balloon injury. Immunostaining revealed that rapamycin-loaded NPs reduced SMC proliferation at both 14 and 28 days whereas rapamycin alone suppressed proliferation at day 14 only. Moreover, rapamycin-loaded NPs sustainably suppressed IH for at least 28 days following treatment, whereas rapamycin alone produced suppression on day 14 with rebound of IH by day 28. Since rapamycin, PLGA, and pluronic gel have all been approved by the FDA for other human therapies, this drug delivery method could potentially be translated into human use quickly to prevent failure of open vascular reconstructions.


Cellular Signalling | 2016

A crosstalk between TGF-β/Smad3 and Wnt/β-catenin pathways promotes vascular smooth muscle cell proliferation.

Daniel DiRenzo; Mirnal A. Chaudhary; Xudong Shi; Sarah Franco; Joshua Zent; Katie Wang; Lian-Wang Guo; K. Craig Kent

RATIONALE Endovascular interventions performed for atherosclerotic lesions trigger excessive vascular smooth muscle cell (SMC) proliferation leading to intimal hyperplasia. Our previous studies show that following endovascular injury, elevated TGF-β/Smad3 promotes SMC proliferation and intimal hyperplasia. Furthermore in cultured SMCs, elevated TGF-β/Smad3 increases the expression of several Wnt genes. Here we investigate a crosstalk between TGF-β/Smad3 and Wnt/β-catenin signaling and its role in SMC proliferation. METHODS AND RESULTS To mimic TGF-β/Smad3 up-regulation in vivo, rat aortic SMCs were treated with Smad3-expressing adenovirus (AdSmad3) or AdGFP control followed by stimulation with TGF-β1 (or solvent). AdSmad3/TGF-β treatment up-regulated Wnt2b, Wnt4, Wnt5a, Wnt9a, and Wnt11 (confirmed by qRT-PCR and ELISA), and also increased β-catenin protein as detected by Western blotting. Blocking Wnt signaling using a Frizzled receptor inhibitor (Niclosamide) abolished TGF-β/Smad3-induced β-catenin stabilization. Increasing β-catenin through degradation inhibition (using SKL2001) or by adenoviral expression enhanced SMC proliferation. Furthermore, application of recombinant Wnt2b, Wnt4, Wnt5a, or Wnt9a, but not Wnt11, stabilized β-catenin and stimulated SMC proliferation as well. In addition, increased β-catenin was found in the neointima of injured rat carotid artery where TGF-β and Smad3 are known to be up-regulated. CONCLUSIONS These results suggest a novel mechanism whereby elevated TGF-β/Smad3 stimulates the secretion of canonical Wnts which in turn enhances SMC proliferation through β-catenin stabilization. This crosstalk between TGF-β/Smad3 and Wnt/β-catenin canonical pathways provides new insights into the pathophysiology of vascular SMCs linked to intimal hyperplasia.


American Journal of Physiology-heart and Circulatory Physiology | 2012

TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells

Pasithorn A. Suwanabol; Stephen Seedial; Fan Zhang; Xudong Shi; Yi Si; Bo Liu; K. Craig Kent

Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.


PLOS ONE | 2014

TGF-β/Smad3 Stimulates Stem Cell/Developmental Gene Expression and Vascular Smooth Muscle Cell De-Differentiation

Xudong Shi; Daniel DiRenzo; Lian-Wang Guo; Sarah Franco; Bowen Wang; Stephen Seedial; K. Craig Kent

Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.


Journal of the American Society for Mass Spectrometry | 2017

Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization

Qing Yu; Bowen Wang; Zhengwei Chen; Go Urabe; Matthew S. Glover; Xudong Shi; Lian-Wang Guo; K. Craig Kent; Lingjun Li

AbstractProtein glycosylation, one of the most heterogeneous post-translational modifications, can play a major role in cellular signal transduction and disease progression. Traditional mass spectrometry (MS)-based large-scale glycoprotein sequencing studies heavily rely on identifying enzymatically released glycans and their original peptide backbone separately, as there is no efficient fragmentation method to produce unbiased glycan and peptide product ions simultaneously in a single spectrum, and that can be conveniently applied to high throughput glycoproteome characterization, especially for N-glycopeptides, which can have much more branched glycan side chains than relatively less complex O-linked glycans. In this study, a redefined electron-transfer/higher-energy collision dissociation (EThcD) fragmentation scheme is applied to incorporate both glycan and peptide fragments in one single spectrum, enabling complete information to be gathered and great microheterogeneity details to be revealed. Fetuin was first utilized to prove the applicability with 19 glycopeptides and corresponding five glycosylation sites identified. Subsequent experiments tested its utility for human plasma N-glycoproteins. Large-scale studies explored N-glycoproteomics in rat carotid arteries over the course of restenosis progression to investigate the potential role of glycosylation. The integrated fragmentation scheme provides a powerful tool for the analysis of intact N-glycopeptides and N-glycoproteomics. We also anticipate this approach can be readily applied to large-scale O-glycoproteome characterization. Graphical Abstractᅟ


Journal of Controlled Release | 2014

A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia

Xiaohua Yu; Toshio Takayama; Shakti A. Goel; Xudong Shi; Yifan Zhou; K. Craig Kent; William L. Murphy; Lian-Wang Guo

Intimal hyperplasia produces restenosis (re-narrowing) of the vessel lumen following vascular intervention. Drugs that inhibit intimal hyperplasia have been developed, however there is currently no clinical method of perivascular drug-delivery to prevent restenosis following open surgical procedures. Here we report a poly(ε-caprolactone) (PCL) sheath that is highly effective in preventing intimal hyperplasia through perivascular delivery of rapamycin. We first screened a series of bioresorbable polymers, i.e., poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLLA), PCL, and their blends, to identify desired release kinetics and sheath physical properties. Both PLGA and PLLA sheaths produced minimal (<30%) rapamycin release within 50days in PBS buffer. In contrast, PCL sheaths exhibited more rapid and near-linear release kinetics, as well as durable integrity (>90days) as evidenced in both scanning electron microscopy and subcutaneous embedding experiments. Moreover, a PCL sheath deployed around balloon-injured rat carotid arteries was associated with a minimum rate of thrombosis compared to PLGA and PLLA. Morphometric analysis and immunohistochemistry revealed that rapamycin-loaded perivascular PCL sheaths produced pronounced (85%) inhibition of intimal hyperplasia (0.15±0.05 vs 1.01±0.16), without impairment of the luminal endothelium, the vessels anti-thrombotic layer. Our data collectively show that a rapamycin-loaded PCL delivery system produces substantial mitigation of neointima, likely due to its favorable physical properties leading to a stable yet flexible perivascular sheath and steady and prolonged release kinetics. Thus, a PCL sheath may provide useful scaffolding for devising effective perivascular drug delivery particularly suited for preventing restenosis following open vascular surgery.

Collaboration


Dive into the Xudong Shi's collaboration.

Top Co-Authors

Avatar

K. Craig Kent

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lian-Wang Guo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bo Liu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bowen Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Stephen Seedial

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sarah Franco

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Toshio Takayama

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Daniel DiRenzo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mengxue Zhang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yi Si

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge