Bowen Yan
Jiangnan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bowen Yan.
Journal of Agricultural and Food Chemistry | 2018
Bowen Yan; Yuan Yao Chen; Weilan Wang; Jianxin Zhao; Wei Chen; Michael G. Gänzle
Kokumi-active γ-glutamyl dipeptides (γ-GPs) accumulate in fermented food. γ-Glutamyl transferase, glutaminase, glutathione synthetase, and γ-glutamyl cysteine ligase (GCL) may synthesize γ-GPs. The genome of Lactobacillus reuteri encodes GCL but not glutathione synthetase or glutamyl transferase; therefore, this study investigated the role of GCL in γ-GP synthesis by L. reuteri LTH5448. Phylogenomic analysis of gcl in lactobacilli demonstrated that three genes coding for GCL are present in L. reuteri; two of these are present in L. reuteri LTH5448. Two deletion mutants of L. reuteri LTH5448, L. reuteri LTH5448Δ gcl1 and LTH5448Δ gcl1Δ gcl2, were constructed by double crossover mutagenesis. Growth and oxygen resistance of the mutants were comparable to the wild type. γ-Glu-Glu, γ-Glu-Leu, γ-Glu-Ile, γ-Glu-Val, and γ-Glu-Cys were quantified in buffer and sourdough fermentations by liquid chromatography-mass spectrometry. The wild type and L. reuteri Δ gcl1 but not Δ gcl1Δ gcl2 converted amino acids to γ-Glu-Cys. γ-Glu-Ile accumulation was reduced in both mutants; however, the disruption of gcl did not alter the biosynthesis of the other γ-GPs. In conclusion, gcl1 in L. reuteri mediates γ-Glu-Ile synthesis, gcl2 mediates γ-Glu-Cys synthesis, but neither gene affected synthesis of other γ-GPs. This study facilitates selection of starter cultures that synthesize γ-Glu peptides with kokumi activity and, thus, improve the taste of fermented foods.
International Journal of Molecular Sciences | 2018
Yejun Wu; Daming Fan; Feng Hang; Bowen Yan; Jianxin Zhao; Hao Zhang; Wei Chen
During heating, there are a lot of physical and chemical changes in milk components, which are mainly reflected in the changes of proteins. Calcium ions in milk react with proteins to precipitate or form gels, and the thermal stability of milk is affected by the type and content of calcium. In this study, different calcium-fortified milk systems were treated by rapid conventional heating (RCV) and microwave heating (MV) to evaluate the effects of forms and concentration of calcium in liquid milk on microwave absorption properties and thermal stability of milk. It was found that the concentration of calcium ions on microwave energy absorption is not a significant influence, while the forms affected the systems dramatically. The thermal stability of milk during MV is remarkably affected by the forms of calcium ions. When adding ionized calcium, the calcium-fortified milk systems had poor thermal stability and severe agglomeration of protein, while the addition of milk calcium had little effect and was almost free from protein coagulation. It could be speculated that the metal ions in the microwave field could create a strong vibration that could trigger protein agglomeration through the combination of the surrounding casein phosphorylates.
International Journal of Biological Macromolecules | 2018
Yejun Wu; Daming Fan; Yishu Gao; Shenyan Ma; Bowen Yan; Huizhang Lian; Jianxin Zhao; Hao Zhang
The hydration process of starch significantly affects the quality of starch-based food, especially for samples with medium to low water content. In this paper, rice starch, as a representative of cereal starch, and potato starch were chosen as the samples. The proton distributions and flow status of the hydrated rice starch and potato starch with moisture contents of 20-90% and the causes of the differences between them were investigated by 1H LF-NMR. The longitudinal and transverse proton relaxation (T1 and T2) of the two starch systems was obtained using the inversion recovery (IR) sequence, the free induction decay (FID) sequence, and the multi-pulse echo CPMG sequence. Through the detection of longitudinal relaxation, two different populations were found in the two hydrated starch systems, and the changes were linearly related to the moisture content. Through the detection of transverse relaxation, two populations were distinguished in the hydrated rice starch samples with different moisture content, whereas two to four different populations were detected in the hydrated potato starch samples. Because of the differences in particle size and swelling capacity, hydrated potato starch showed greater proton freedom and more observable types of protons than hydrated rice starch.
Food Science and Technology International | 2018
Lei Wang; Daming Fan; Lulu Fu; Xidong Jiao; Jianlian Huang; Jianxin Zhao; Bowen Yan; Wenguo Zhou; Wenhai Zhang; Weijian Ye; Hao Zhang
This study investigated the effect of glucose oxidase on the gel properties of threadfin bream surimi. The gel strength of surimi increased with the addition of 0.5‰ glucose oxidase after two-step heating. Based on the results of the chemical interactions, the hydrophobic interaction and disulfide bond of glucose oxidase-treated surimi samples increased compared with the control samples at the gelation temperature and gel modori temperature. The surface hydrophobicity of samples with glucose oxidase and glucose increased significantly (p < 0.05) and total sulfhydryl groups decreased significantly (p < 0.05). The analysis of Raman spectroscopy shows that the addition of glucose oxidase induced more α-helixes to turn into a more elongated random and flocculent structure. Glucose oxidase changes the secondary structure of the surimi protein, making more proteins depolarize and stretch and causing actomyosin to accumulate to each other, resulting in the formation of surimi gel.
Food Chemistry | 2018
Hongwei Cao; Daming Fan; Xidong Jiao; Jianlian Huang; Jianxin Zhao; Bowen Yan; Wenguo Zhou; Wenhai Zhang; Weijian Ye; Hao Zhang; Wei Chen
Transglutaminase (TGase) was selected as model enzyme to investigate the effects of microwave (MW) heating on its activity and structure compared to water bath (WB) heating. MW heating can enhance the activity of TGase and reach the maximum at 20 min, whereas conduction heating has little effect on the activity of TGase. The difference of dielectric properties between MW heating and WB heating were not obvious, but MW heating had higher conductivity than WB heating. The results of ultraviolet and fluorescence spectra show that MW heating can change the enzyme activity by changing the conformation of TGase. The decrease of α-helix and an increase of β-sheet and β-turn investigated by circular dichroism (CD) indicated the secondary structures of TGase were changed when treated by MW heating. Further gel properties test confirmed that TGase treated by MW could improve the functional and mechanical properties of surimi gel.
Journal of Food Quality | 2017
Xiaoshu Tang; Daming Fan; Feng Hang; Bowen Yan; Jianxin Zhao; Hao Zhang
With the iron-fortified milk as research object, this paper makes a research on the influence of iron on the dielectric properties and wave absorption properties and effect of nutritional components, such as casein and whey protein in milk, and thermostability in the process of microwave heating, and rapid heat transfer method in ferrous gluconate–milk and ferrous chloride–milk, respectively. The results show that the iron of ionic form has greater influence to convert microwave to heat energy and the effect of microwave absorption properties was greater for ferrous chloride than for ferrous gluconate at high concentration. The effect of different forms of iron on the composition of milk was different, and the composition of milk systems was more stable by microwave heating, but the rapid heat transfer method is superior in the aim of increasing the nutritional value of milk. The ferrous gluconate–milk system has a better thermal stability than ferrous chloride–milk system. From the aspect of dielectric induction, the paper discovers the response rules of iron and evaluates the microwave thermal safety of the traditional and the iron-fortified products by microwave heating.
Journal of Chemistry | 2016
Daming Fan; Bowen Yan; Huizhang Lian; Jianxin Zhao; Hao Zhang
The quality of traditional Chinese fried fritters is typically measured using human sensory evaluation techniques and physicochemical indices, the process of which is laborious and time-consuming. This study aimed to investigate the relationship between instrumental parameters, sensory criteria, and physicochemical indices. Significant correlations were found using principle component analysis. Volume, fat, texture, palatability, and instrumental parameters (hardness, fracturability, springiness, and gumminess) were found to be the main factors influencing the quality of Chinese fried fritters by principal component analysis (PCA) and instrumental methods, which were satisfactory replacement for human evaluation in correlation testing.
Lwt - Food Science and Technology | 2017
Daming Fan; Luelue Huang; Bin Li; Jianlian Huang; Jianxin Zhao; Bowen Yan; Wenguo Zhou; Wenhai Zhang; Hao Zhang
Archive | 2012
Daming Fan; Jianxin Zhao; Wei Chen; Hao Zhang; Zhijian Wang; Liyun Wang; Bowen Yan
Journal of Food Processing and Preservation | 2016
Bowen Yan; Jianxin Zhao; Daming Fan; Fengwei Tian; Hao Zhang; Wei Chen