Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daming Fan is active.

Publication


Featured researches published by Daming Fan.


Proteins | 2009

Analysis of Secondary Structure and Self-Assembly of Amelogenin by Variable Temperature Circular Dichroism and Isothermal Titration Calorimetry

Rajamani Lakshminarayanan; Il Yoon; Balachandra G. Hegde; Daming Fan; Chang Du; Janet Moradian-Oldak

Amelogenin is a proline‐rich enamel matrix protein known to play an important role in the oriented growth of enamel crystals. Amelogenin self‐assembles to form nanospheres and higher order structures mediated by hydrophobic interactions. This study aims to obtain a better insight into the relationship between primary–secondary structure and self‐assembly of amelogenin by applying computational and biophysical methods. Variable temperature circular dichroism studies indicated that under physiological pH recombinant full‐length porcine amelogenin contains unordered structures in equilibrium with polyproline type II (PPII) structure, the latter being more populated at lower temperatures. Increasing the concentration of rP172 resulted in the promotion of folding to an ordered β‐structured assembly. Isothermal titration calorimetry dilution studies revealed that at all temperatures, self‐assembly is entropically driven due to the hydrophobic effect and the molar heat of assembly (ΔHA) decreases with temperature. Using a computational approach, a profile of domains in the amino acid sequence that have a high propensity to assemble and to have PPII structures has been identified. We conclude that the assembly properties of amelogenin are due to complementarity between the hydrophobic and PPII helix prone regions. Proteins 2009.


Journal of Biological Chemistry | 2011

Dissecting amelogenin protein nanospheres: characterization of metastable oligomers.

Keith M. Bromley; Andrew Kiss; Sowmya Bekshe Lokappa; Rajamani Lakshminarayanan; Daming Fan; Moise Ndao; John Spencer Evans; Janet Moradian-Oldak

Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp161, Trp45, and Trp25) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (RH) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg·ml−1. We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp161) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp25 and Trp45 is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.


Journal of Dental Research | 2008

Enamel Proteases Reduce Amelogenin-Apatite Binding

Zhi Sun; Daming Fan; Yuwei Fan; Chang Du; Janet Moradian-Oldak

Organic matrix degradation and crystal maturation are extracellular events that occur simultaneously during enamel biomineralization. We hypothesized that enamel proteases control amelogenin-mineral interaction, which, in turn can affect crystal nucleation, organization, and growth. We used a recombinant amelogenin (rP172), a homolog of its major cleavage product (rP148), and a native amelogenin lacking both N- and C-termini (13k). We compared apatite binding affinity between amelogenins and their digest products during proteolysis. We further compared binding affinity among the 3 amelogenins using a Langmuir model for protein adsorption. Amelogenin-apatite binding affinity was progressively reduced with the proteolysis at the C- and N- termini by recombinant pig MMP-20 (rpMMP20) and recombinant human kallikrein-4 (rhKLK4), respectively. The binding affinity of amelogenin to apatite was found to be in the descending order of rP172, rP148, and 13k. Analysis of our data suggests that, before its complete degradation during enamel maturation, stepwise processing of amelogenin by MMP-20 and then KLK4 reduces amelogenin-apatite interaction.


Cells Tissues Organs | 2011

The Cooperation of Enamelin and Amelogenin in Controlling Octacalcium Phosphate Crystal Morphology

Daming Fan; Mayumi Iijima; Keith M. Bromley; Xiudong Yang; Shibi Mathew; Janet Moradian-Oldak

Enamel matrix proteins, including the most abundant amelogenin and lesser amounts of enamelin, ameloblastin, and proteinases, play vital roles in controlling crystal nucleation and growth during enamel formation. The cooperative action between amelogenin and the 32-kDa enamelin is critical to regulating the growth morphology of octacalcium phosphate crystals. Using biophysical methods, we investigated the interaction between the 32-kDa enamelin and recombinant pig amelogenin 148 (rP148) at pH 6.5 in phosphate-buffered saline (PBS). Dynamic light scattering results showed a trend of increasing particle size in the mixture with the addition of enamelin to amelogenin. Upon addition of the 32-kDa enamelin, the shift and intensity decrease in the ellipticity minima of rP148 in the circular dichroism spectra of rP148 illustrated a direct interaction between the 2 proteins. In the fluorescence spectra, the maximum emission of rP148 was blue shifted from 335 to 333 nm in the presence of enamelin as a result of complexation of the 2 proteins. Our results demonstrate that the 32-kDa enamelin has a close association with amelogenin at pH 6.5 in PBS buffer. Our present study provides novel insights into the possible cooperation between enamelin and amelogenin in macromolecular coassembly and in controlling enamel mineral formation


Journal of Structural Biology | 2008

The 32 kDa enamelin undergoes conformational transitions upon calcium binding

Daming Fan; Rajamani Lakshminarayanan; Janet Moradian-Oldak

The 32 kDa hydrophilic and acidic enamelin, the most stable cleavage fragment of the enamel specific glycoprotein, is believed to play vital roles in controlling crystal nucleation or growth during enamel biomineralization. Circular dichroism and Fourier transform infrared spectra demonstrate that the secondary structure of the 32 kDa enamelin has a high content of alpha-helix (81.5%). Quantitative analysis on the circular dichroism data revealed that the 32 kDa enamelin undergoes conformational changes with a structural preference to beta-sheet with increasing concentration of calcium ions. We suggest that the increase of beta-sheet conformation in the presence of Ca(2+) may allow preferable interaction of the 32 kDa enamelin with apatite crystal surfaces during enamel biomineralization. The calcium association constant (K(a)=1.55 (+/-0.13)x10(3)M(-1)) of the 32 kDa enamelin calculated from the fitting curve of ellipticity at 222 nm indicated a relatively low affinity. Our current biophysical studies on the 32 kDa enamelin structure provide novel insights towards understanding the enamelin-mineral interaction and subsequently the functions of enamelin during enamel formation.


Journal of Dental Research | 2010

Apatite Reduces Amelogenin Proteolysis by MMP-20 and KLK4 in vitro

Zhi Sun; W. Carpiaux; Daming Fan; Yuwei Fan; Rajamani Lakshminarayanan; Janet Moradian-Oldak

Two enamel proteases, matrix metalloproteinase-20 (MMP-20) and kallikrein 4 (KLK4), are known to cleave amelogenin and are necessary for proper enamel formation. However, the effect of hydroxyapatite (HAP) on the proteolytic activity of these enzymes remains unclear. To investigate whether apatite affects normal amelogenin proteolysis, we used 2 different isoforms of amelogenin combined with the appropriate enzymes to analyze proteolytic processing rates in the presence or absence of synthetic hydroxyapatite (HAP) crystals (N = 3). We found a distinct dose-dependent relationship between the amount of HAP present in the proteolysis mixture and the rate of rP172 degradation by rpMMP-20, whereas the effect of HAP on proteolysis of either rP172 or rP148 by rhKLK4 was less prominent.


Journal of Structural Biology | 2011

Amelogenin "nanorods" formation during proteolysis by Mmp-20.

Xiudong Yang; Zhi Sun; Ruiwen Ma; Daming Fan; Janet Moradian-Oldak

Amelogenin is cleaved by enamelysin (Mmp-20) soon after its secretion, and the cleavage products accumulate in specific locations during enamel formation, suggesting that parent amelogenin proteolysis is necessary for activating its functions. To investigate the precise roles of Mmp-20 and its influence on the assembly of amelogenin, an in vitro enzymatic digestion process mimicking the initial stages of amelogenin proteolysis was investigated at near-physiological conditions using recombinant porcine amelogenin (rP172) and enamelysin. Hierarchically organized nanorod structures formed during different digestion stages were detected by TEM. At the earliest stage, uniformly dispersed parent amelogenin spherical particles, mixed with some darker stained smaller spheres, and accompanying elongated chain-like nanostructures were observed. Cylindrical nanorods, which appeared to be the result of tight assembly of thin subunit cylindrical discs with thicknesses ranging from ∼2.5 to ∼6.0nm, were formed after an hour of proteolysis. These subunit building blocks stacked to form nanorods with maximum length of ∼100nm. With the production of more cleavage products, additional morphologies spontaneously evolved from the cylindrical nanorods. Larger ball-like aggregates ultimately formed at the end of proteolysis. The uniform spherical particles, nanorods, morphological patterns evolved from nanorods, and globular aggregated microstructures were successively formed by means of co-assembly of amelogenin and its cleavage products during a comparatively slow proteolysis process. We propose that, following the C-terminal cleavage of amelogenin, co-assembly with its fragments leads to formation of nanorod structures whose properties eventually dictate the super-structural organization of enamel matrix, controlling the elongated growth of enamel apatite crystals.


European Journal of Oral Sciences | 2011

Amelogenin-enamelin association in phosphate-buffered saline.

Xiudong Yang; Daming Fan; Shibi Mattew; Janet Moradian-Oldak

The structures and interactions among macromolecules in the enamel extracellular matrix play vital roles in regulating hydroxyapatite crystal nucleation, growth, and maturation. We used dynamic light scattering (DLS), circular dichroism (CD), fluorescence spectroscopy, and transmission electron microscopy (TEM) to investigate the association of amelogenin and the 32-kDa enamelin, at physiological pH 7.4, in phosphate-buffered saline (PBS). The self-assembly behavior of amelogenin (rP148) was altered following addition of the 32-kDa enamelin. Dynamic light scattering revealed a trend for a decrease in aggregate size in the solution following the addition of enamelin to amelogenin. A blue-shift and intensity increase of the ellipticity minima of rP148 in the CD spectra upon the addition of the 32-kDa enamelin, suggest a direct interaction between the two proteins. In the fluorescence spectra, the maximum emission of rP148 was red-shifted from 335 to 341 nm with a marked intensity increase in the presence of enamelin as a result of complexation of the two proteins. In agreement with DLS data, TEM imaging showed that the 32-kDa enamelin dispersed the amelogenin aggregates into oligomeric particles and stabilized them. Our study provides novel insights into understanding the possible cooperation between enamelin and amelogenin in macromolecular co-assembly and in controlling enamel mineral formation.


Cells Tissues Organs | 2009

Immunogold Labeling of Amelogenin in Developing Porcine Enamel Revealed by Field Emission Scanning Electron Microscopy

Chang Du; Daming Fan; Zhi Sun; Yuwei Fan; Rajamani Lakshminarayanan; Janet Moradian-Oldak

The present study describes a method using immunohistochemical labeling in combination with high-resolution imaging (field emission scanning electron microscopy) to investigate the spatial localization of amelogenins on apatite crystallites in developing porcine enamel. Cross-sections of developing enamel tissue from freeze-fractured pig third molar were treated with antiserum against recombinant mouse amelogenin and immunoreactivity confirmed by Western blot analysis. The samples were then treated with the goat anti-rabbit IgG conjugated with 10-nm gold particles. The control samples were treated with the secondary antibody only. The in-lens secondary electrons detector and quadrant back-scattering detector were employed to reveal the high-resolution morphology of enamel structures and gold particle distribution. The immunolabeling showed a preference of the gold particle localization along the side faces of the ribbon-like apatite crystals. The preferential localization of amelogenin in vivo on enamel crystals strongly supports its direct function in controlling crystal morphology.


Biophysical Journal | 2007

The Role of Secondary Structure in the Entropically Driven Amelogenin Self-Assembly☆

Rajamani Lakshminarayanan; Daming Fan; Chang Du; Janet Moradian-Oldak

Collaboration


Dive into the Daming Fan's collaboration.

Top Co-Authors

Avatar

Janet Moradian-Oldak

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Rajamani Lakshminarayanan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Zhi Sun

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chang Du

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Keith M. Bromley

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Xiudong Yang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yuwei Fan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Kiss

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Balachandra G. Hegde

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge