Boyi Dai
University of Wyoming
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boyi Dai.
American Journal of Sports Medicine | 2015
Boyi Dai; William E. Garrett; Michael T. Gross; Darin A. Padua; Robin M. Queen; Bing Yu
Background: Anterior cruciate ligament injuries (ACL) commonly occur during jump landing and cutting tasks. Attempts to land softly and land with greater knee flexion are associated with decreased ACL loading. However, their effects on performance are unclear. Hypothesis: Attempts to land softly will decrease peak posterior ground-reaction force (PPGRF) and knee extension moment at PPGRF compared with a natural landing during stop-jump and side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact will increase knee flexion at PPGRF compared with a natural landing during both tasks. In addition, both landing techniques will increase stance time and lower extremity mechanical work as well as decrease jump height and movement speed compared with a natural landing during both tasks. Study Design: Controlled laboratory study. Methods: A total of 18 male and 18 female recreational athletes participated in the study. Three-dimensional kinematic and kinetic data were collected during stop-jump and side-cutting tasks under 3 conditions: natural landing, soft landing, and landing with greater knee flexion at initial ground contact. Results: Attempts to land softly decreased PPGRF and knee extension moment at PPGRF compared with a natural landing during stop-jump tasks. Attempts to land softly decreased PPGRF compared with a natural landing during side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact increased knee flexion angle at PPGRF compared with a natural landing during both stop-jump and side-cutting tasks. Attempts to land softly and land with greater knee flexion at initial ground contact increased stance time and lower extremity mechanical work, as well as decreased jump height and movement speed during both stop-jump and side-cutting tasks. Conclusion: Although landing softly and landing with greater knee flexion at initial ground contact may reduce ACL loading during stop-jump and side-cutting tasks, the performance of these tasks decreased, as indicated by increased stance time and mechanical work as well as decreased jump height and movement speed. Clinical Relevance: Training effects tested in laboratory environments with the focus on reducing ACL loading may be reduced in actual competition environments when the focus is on athlete performance. The effects of training programs for ACL injury prevention on lower extremity biomechanics in athletic tasks may need to be evaluated in laboratories as well as in actual competitions.
Journal of Sports Sciences | 2015
Yongming Li; Xiong Wang; Xiaoping Chen; Boyi Dai
Abstract The functional movement screen is developed to examine individuals’ movement patterns through 7 functional tasks. The purpose of this study was to identify the internal consistency and factor structure of the 7 tasks of the functional movement screen in elite athletes; 290 elite athletes from a variety of Chinese national teams were assessed using the functional movement screen. Cronbach’s alpha was calculated for the scores of the 7 tasks. Exploratory factor analysis was performed to explore the factor structure of the functional movement screen. The mean and standard deviation of the sum score were 15.2 ± 3.0. A low Cronbach’s alpha (0.58) was found for the scores of the 7 tasks. Exploratory factor analysis extracted 2 factors with eigenvalues greater than 1, and these 2 factors explained 47.3% of the total variance. The first factor had a high loading on the rotatory stability (loading = 0.99) and low loadings on the other 6 tasks (loading range: 0.04–0.34). The second factor had high loadings on the deep squat, hurdle step and inline lunge (loading range: 0.46–0.61) and low loadings on the other 3 tasks (loading range: 0.12–0.32). The 7 tasks of the functional movement screen had low internal consistency and were not indicators of a single factor. Evidence for unidimensionality was not found for the functional movement screen in elite athletes. More attention should be paid to the score of each task rather than the sum score when we interpret the functional movement screen scores.
Ergonomics | 2013
Jie Zhou; Boyi Dai; Xiaopeng Ning
Sudden unexpected loading has been identified as a risk factor of work-related low back pain (LBP). This study investigated the effects of different foot placements and load-releasing locations on trunk biomechanics under an unexpected sudden loading event. Fifteen subjects experienced sudden release of a 6.8-kg external load from symmetric or asymmetric directions while maintaining four different foot placements. The results showed that subjects experienced on average 4.1° less trunk flexion, 6.6 Nm less L5/S1 joint moment and 32.0 N less shear force with staggered stance with the right foot forward (the most preferred placement) compared with wide stance (the least preferred placement). Asymmetric load-releasing positions consistently resulted in smaller impacts on trunk biomechanics than symmetric positions. The findings suggest that staggered stance and asymmetric load-holding position can be used as a protective load-handling posture against LBP caused by sudden loading. Practitioner Summary: In a work environment, unexpected sudden loading may cause low back pain (LBP). In this study, we used empirical data to demonstrate how different foot placements and load-releasing locations can be used to mitigate the impact of sudden loading on the spine and to reduce the risk of LBP.
Journal of Biomechanics | 2014
Boyi Dai; Erika M. Heinbaugh; Xiaopeng Ning; Qin Zhu
An increased knee abduction angle during jump-landing has been identified as a risk factor for anterior cruciate ligament injuries. Activation of the hip abductors may decrease the knee abduction angle during jump-landing. The purpose of this study was to examine the effects of a resistance band on the internal hip abduction moment and gluteus medius activation during the pre-landing (100ms before initial contact) and early-landing (100ms after initial contact) phases of a jump-landing-jump task. Thirteen male and 15 female recreational athletes (age: 21.1±2.4yr; mass: 73.8±14.6kg; height: 1.76±0.1m) participated in the study. Subjects performed jump-landing-jump tasks with or without a resistance band applied to their lower shanks. During the with-band condition, subjects were instructed to maintain their movement patterns as performing the jump-landing task without a resistance band. Lower extremity kinematics, kinetics, and gluteus medius electromyography (EMG) were collected. Applying the band increased the average hip abduction moment during pre-landing (p<0.001, Cohen׳s d (d)=2.8) and early-landing (p<0.001, d=1.5), and the average gluteus medius EMG during pre-landing (p<0.001, d=1.0) and early-landing (p=0.003, d=0.55). Applying the band decreased the initial hip flexion angle (p=0.028, d=0.25), initial hip abduction angle (p<0.001, d=0.91), maximum knee flexion angle (p=0.046, d=0.17), and jump height (p=0.004, d=0.16). Applying a resistance band provides a potential strategy to train the strength and muscle activation for the gluteus medius during jump-landing. Additional instructions and feedback regarding hip abduction, hip flexion, and knee flexion may be required to minimize negative changes to other kinematic variables.
Research in Sports Medicine | 2015
Michael R. Donohue; Samantha M. Ellis; Erika M. Heinbaugh; Mitchell L. Stephenson; Qin Zhu; Boyi Dai
Landing and squat tasks have been utilized to assess lower extremity biomechanics associated with anterior cruciate ligament loading and injury risks. The purpose of this study was to identify the differences and correlations in knee and hip mechanics during a single-leg landing, a single-leg squat, a double-leg landing, and a double-leg squat. Seventeen male and 17 female recreational athletes performed landings and squats when kinematic and kinetic data were collected. ANOVAs showed significant differences (p < 0.00001) for maximum knee flexion angles, maximum hip flexion angles, maximum knee abduction angles, maximum hip adduction angles, and maximum external knee abduction moments among squats and landings. For maximum knee and hip flexion angles, significant correlations (r ≥ 0.5, p ≤ 0.003) were observed between the two landings and between the two squats. For maximum knee abduction and hip adduction angles and maximum external knee abduction moments, significant correlations were mostly found between the two landings, and between the single-leg squat and landings (r ≥ 0.54, p ≤ 0.001). Individuals are likely to demonstrate different profiles of injury risks when screened using different tasks. While a double-leg landing should be considered as a priority in screening, a single-leg squat may be used as a surrogate to assess frontal plane motion and loading.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting | 2013
Jie Zhou; Xiaopeng Ning; Boyi Dai
The purpose of this study was to explore the effect of foot posture on trunk biomechanical responses when experiencing sudden external loading. Fifteen subjects were recruited to perform a series of sudden loading tasks using three different foot postures with two levels of weight. Our results showed that sudden external loading generated the smallest impact when subjects adopted “Staggered Stance”. Compared with “Wide Stance”, “Staggered Stance” significantly decreased the increment of trunk flexion angle, increment of L5/S1 joint moment, and peak L5/S1 joint anterior-posterior shear force by 21.5%, 6.5%, and 22.5%, respectively. Compared with “Narrow Stance”, the decreases were 15.1%, 3.2%, and 16.2% respectively. Heavier load weight resulted in larger spinal impact. The interaction effect between foot posture and magnitude of the load was not significant. The findings of this study could be used in reducing the risk of low back pain when dealing with sudden loading.
Journal of Strength and Conditioning Research | 2015
Mitchell L. Stephenson; Derek T. Smith; Erika M. Heinbaugh; Rebecca C. Moynes; Shawn S. Rockey; Joi Thomas; Boyi Dai
Abstract Stephenson, ML, Smith, DT, Heinbaugh, EM, Moynes, RC, Rockey, SS, Thomas, JJ, and Dai, B. Total and lower extremity lean mass percentage positively correlates with jump performance. J Strength Cond Res 29(8): 2167–2175, 2015—Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18–35 years, 28 middle-aged participants aged 36–55 years, and 34 older participants aged 56–75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p < 0.001, r = 0.59), normalized peak vertical power (p < 0.001, r = 0.73), and jump height (p < 0.001, r = 0.74) for the combined age groups. Most relationships were also strong within each age group, with some relationships being relatively weaker in the middle-aged and older groups. Minimal difference was found between correlation coefficients of TBLM% and LELM%. Coefficients of determination were all below 0.6 for the combined group, indicating that between-participant variability in CMJ measures cannot be completely explained by lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.
Journal of Biomechanics | 2016
Jie Zhou; Xiaopeng Ning; Boyi Hu; Boyi Dai
Different standing postures could potentially influence trunk biomechanics during task performance. The current study investigated how foot placement, especially stance width and foot angle influenced lumbopelvic rhythm during sagittal trunk flexion motion. Ten participants performed pace controlled sagittally symmetric trunk flexion motions while maintaining three different stance widths and two different foot angles. The results showed the narrower stance and angled foot placement conditions generated more in-phase lumbopelvic coordination patterns during trunk flexion motions, possibly due to the reduced base of support and the associated postural stability. Findings of this study provided important information regarding the effects of foot placement on postural control and trunk biomechanics during trunk bending motions; these results suggested that foot placement could alter the motion patterns of spinal segments.
Journal of Sport and Health Science | 2016
Boyi Dai; William E. Garrett; Michael T. Gross; Darin A. Padua; Robin M. Queen; Bing Yu
Background Anterior cruciate ligament (ACL) injuries commonly occur during the early phase of landing and cutting tasks that involve sudden decelerations. The purpose of this study was to investigate the effects of jump height and jump speed on lower extremity biomechanics during a stop-jump task and the effect of cutting speed on lower extremity biomechanics during a side-cutting task. Methods Thirty-six recreational athletes performed a stop-jump task under 3 conditions: jumping fast, jumping for maximum height, and jumping for 60% of maximum height. Participants also performed a side-cutting task under 2 conditions: cutting at maximum speed and cutting at 60% of maximum speed. Three-dimensional kinematic and kinetic data were collected. Results The jumping fast condition resulted in increased peak posterior ground reaction force (PPGRF), knee extension moment at PPGRF, and knee joint stiffness and decreased knee flexion angle compared with the jumping for maximum height condition. The jumping for 60% of maximum height condition resulted in decreased knee flexion angle compared with the jumping for maximum height condition. Participants demonstrated greater PPGRF, knee extension moment at PPGRF, knee valgus angle and varus moment at PPGRF, knee joint stiffness, and knee flexion angle during the cutting at maximum speed condition compared with the cutting at 60% maximum speed condition. Conclusion Performing jump landing at an increased jump speed resulted in lower extremity movement patterns that have been previously associated with an increase in ACL loading. Cutting speed also affected lower extremity biomechanics. Jump speed and cutting speed need to be considered when designing ACL injury risk screening and injury prevention programs.
Sports Biomechanics | 2018
Mitchell L. Stephenson; Taylour J. Hinshaw; Haley A. Wadley; Qin Zhu; Margaret Wilson; Mark Byra; Boyi Dai
Abstract A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual’s reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.