Brad E. Sleebs
Walter and Eliza Hall Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brad E. Sleebs.
Nature Chemical Biology | 2013
Guillaume Lessene; Peter E. Czabotar; Brad E. Sleebs; Kerry Zobel; Kym N. Lowes; Jerry M. Adams; Jonathan B. Baell; Peter M. Colman; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Paul Gibbons; Wilhelmus J A Kersten; Sanjitha Kulasegaram; Rebecca M. Moss; John P. Parisot; Brian J. Smith; Ian P. Street; Hong Yang; David C. S. Huang; Keith Geoffrey Watson
The prosurvival BCL-2 family protein BCL-X(L) is often overexpressed in solid tumors and renders malignant tumor cells resistant to anticancer therapeutics. Enhancing apoptotic responses by inhibiting BCL-X(L) will most likely have widespread utility in cancer treatment and, instead of inhibiting multiple prosurvival BCL-2 family members, a BCL-X(L)-selective inhibitor would be expected to minimize the toxicity to normal tissues. We describe the use of a high-throughput screen to discover a new series of small molecules targeting BCL-X(L) and their structure-guided development by medicinal chemistry. The optimized compound, WEHI-539 (7), has high affinity (subnanomolar) and selectivity for BCL-X(L) and potently kills cells by selectively antagonizing its prosurvival activity. WEHI-539 will be an invaluable tool for distinguishing the roles of BCL-X(L) from those of its prosurvival relatives, both in normal cells and notably in malignant tumor cells, many of which may prove to rely upon BCL-X(L) for their sustained growth.
ACS Medicinal Chemistry Letters | 2014
Zhi-Fu Tao; Lisa A. Hasvold; Le Wang; Xilu Wang; Andrew M. Petros; Chang H. Park; Erwin R. Boghaert; Nathaniel D. Catron; Jun Chen; Peter M. Colman; Peter E. Czabotar; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Sarah G. Hymowitz; Sha Jin; Russell A. Judge; Michael F. T. Koehler; Peter Kovar; Guillaume Lessene; Michael J. Mitten; Chudi Ndubaku; Paul Nimmer; Hans E. Purkey; Anatol Oleksijew; Darren C. Phillips; Brad E. Sleebs; Brian J. Smith; Morey L. Smith; Stephen K. Tahir
A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.
Traffic | 2013
Justin A. Boddey; Teresa G. Carvalho; Anthony N. Hodder; Tobias Sargeant; Brad E. Sleebs; Danushka S. Marapana; Sash Lopaticki; Thomas Nebl; Alan F. Cowman
Plasmodium falciparum exports several hundred effector proteins that remodel the host erythrocyte and enable parasites to acquire nutrients, sequester in the circulation and evade immune responses. The majority of exported proteins contain the Plasmodium export element (PEXEL; RxLxE/Q/D) in their N‐terminus, which is proteolytically cleaved in the parasite endoplasmic reticulum by Plasmepsin V, and is necessary for export. Several exported proteins lack a PEXEL or contain noncanonical motifs. Here, we assessed whether Plasmepsin V could process the N‐termini of diverse protein families in P. falciparum. We show that Plasmepsin V cleaves N‐terminal sequences from RIFIN, STEVOR and RESA multigene families, the latter of which contain a relaxed PEXEL (RxLxxE). However, Plasmepsin V does not cleave the N‐terminal sequence of the major exported virulence factor erythrocyte membrane protein 1 (PfEMP1) or the PEXEL‐negative exported proteins SBP‐1 or REX‐2. We probed the substrate specificity of Plasmepsin V and determined that lysine at the PEXEL P3 position, which is present in PfEMP1 and other putatively exported proteins, blocks Plasmepsin V activity. Furthermore, isoleucine at position P1 also blocked Plasmepsin V activity. The specificity of Plasmepsin V is therefore exquisitely confined and we have used this novel information to redefine the predicted P. falciparum PEXEL exportome.
Journal of Biological Chemistry | 2009
Erinna F. Lee; Peter E. Czabotar; Hong Yang; Brad E. Sleebs; Guillaume Lessene; Peter M. Colman; Brian J. Smith; W D Fairlie
Antagonists of anti-apoptotic Bcl-2 family members hold promise as cancer therapeutics. Apoptosis is triggered when a peptide containing a BH3 motif or a small molecule BH3 peptidomimetic, such as ABT 737, binds to the relevant Bcl-2 family members. ABT-737 is an antagonist of Bcl-2, Bcl-xL, and Bcl-w but not of Mcl-1. Here we describe new structures of mutant BH3 peptides bound to Bcl-xL and Mcl-1. These structures suggested a rationale for the failure of ABT-737 to bind Mcl-1, but a designed variant of ABT-737 failed to acquire binding affinity for Mcl-1. Rather, it was selective for Bcl-xL, a result attributable in part to significant backbone refolding and movements of helical segments in its ligand binding site. To date there are few reported crystal structures of organic ligands in complex with their pro-survival protein targets. Our structure of this new organic ligand provided insights into the structural transitions that occur within the BH3 binding groove, highlighting significant differences in the structural properties of members of the Bcl-2 pro-survival protein family. Such differences are likely to influence and be important in the quest for compounds capable of selectively antagonizing the different family members.
PLOS Biology | 2014
Brad E. Sleebs; Sash Lopaticki; Danushka S. Marapana; Matthew T. O'Neill; Pravin Rajasekaran; Michelle Gazdik; Svenja Günther; Lachlan Whitehead; Kym N. Lowes; Lea Barfod; Lars Hviid; Philip J. Shaw; Anthony N. Hodder; Brian J. Smith; Alan F. Cowman; Justin A. Boddey
A small molecule inhibitor of the malarial protease Plasmepsin V impairs protein export and cellular remodeling, reducing parasite survival in human erythrocytes.
Journal of Medicinal Chemistry | 2011
Brad E. Sleebs; Peter E. Czabotar; Wayne J. Fairbrother; W. Douglas Fairlie; John A. Flygare; David C. S. Huang; Wilhelmus J A Kersten; Michael F. T. Koehler; Guillaume Lessene; Kym N. Lowes; John P. Parisot; Brian J. Smith; Morey L. Smith; Andrew J. Souers; Ian P. Street; Hong Yang; Jonathan B. Baell
ABT-737 and ABT-263 are potent inhibitors of the BH3 antiapoptotic proteins, Bcl-x(L) and Bcl-2. This class of putative anticancer agents invariantly contains an acylsulfonamide core. We have designed and synthesized a series of novel quinazoline-based inhibitors of Bcl-2 and Bcl-x(L) that contain a heterocyclic alternative to the acylsulfonamide. These compounds exhibit submicromolar, mechanism-based activity in human small-cell lung carcinoma cell lines in the presence of 10% human serum. This comprises the first successful demonstration of a quinazoline sulfonamide core serving as an effective benzoylsulfonamide bioisostere. Additionally, these novel quinazolines comprise only the second known class of Bcl-2 family protein inhibitors to induce mechanism-based cell death.
Australian Journal of Chemistry | 2000
Luigi Aurelio; Robert T. C. Brownlee; Andrew B. Hughes; Brad E. Sleebs
A range of oxazolidinones derived from N-carbamoyl α-amino acids were prepared by an efficient method as key intermediates in the synthesis of N-methyl amino acids and peptides. The method was readily applied to most α-amino acids except those with basic side chains. The oxazolidinones were converted by reductive cleavage into N-methyl α-amino acids.
Organic Preparations and Procedures International | 2009
Brad E. Sleebs; T. T. Van Nguyen; Andrew B. Hughes
Introduction ..........................................................................................430 I. β-Amino Acids by α-Amino Acid Homologation ...............................431 II. Enantioselective Synthesis of β-Amino Acids.....................................440 1. Organocatalysis Methods ......................................................................440 a. Organocatalytic Mannich-type Methods..............................................440 b. Organocatalytic Conjugate Addition Methods .....................................444 2. Asymmetric Michael Additions ..............................................................446 a. Conjugate Additions Using Chiral Scaffolds ........................................447 b. Mannich Type Additions Using Chiral Scaffolds ..................................448 3. Enolate Additions .................................................................................451 4. Enantioselective Hydrogenation and Reduction Methods........................457 a. Reduction Methods Using Chiral Scaffolds..........................................457 b. Reduction Methods Using Chiral Catalysts .........................................458 5. Rearrangement Methods.......................................................................462 III. Residue Specific Synthesis and Applications ......................................463 1. Halo-β-amino Acids .............................................................................463 2. Conformationally Constrained β-Amino Acids.......................................466 3. Glycoside Substituted β-Amino Acids ....................................................469 4. β-Amino Acid Applications ...................................................................471 IV. Conclusion .............................................................................................473 Table of Abbreviations..........................................................................473 References..............................................................................................474
Journal of Medicinal Chemistry | 2013
Brad E. Sleebs; Wilhelmus J A Kersten; Sanjitha Kulasegaram; George Nikolakopoulos; Effie Hatzis; Rebecca M. Moss; John P. Parisot; Hong Yang; Peter E. Czabotar; W. Douglas Fairlie; Erinna F. Lee; Jerry M. Adams; Lin Chen; Mark F. van Delft; Kym N. Lowes; Andrew Wei; David C. S. Huang; Peter M. Colman; Ian P. Street; Jonathan B. Baell; Keith Geoffrey Watson; Guillaume Lessene
Developing potent molecules that inhibit Bcl-2 family mediated apoptosis affords opportunities to treat cancers via reactivation of the cell death machinery. We describe the hit-to-lead development of selective Bcl-XL inhibitors originating from a high-throughput screening campaign. Small structural changes to the hit compound increased binding affinity more than 300-fold (to IC50 < 20 nM). This molecular series exhibits drug-like characteristics, low molecular weights (Mw < 450), and unprecedented selectivity for Bcl-XL. Surface plasmon resonance experiments afford strong evidence of binding affinity within the hydrophobic groove of Bcl-XL. Biological experiments using engineered Mcl-1 deficient mouse embryonic fibroblasts (MEFs, reliant only on Bcl-XL for survival) and Bax/Bak deficient MEFs (insensitive to selective activation of Bcl-2-driven apoptosis) support a mechanism-based induction of apoptosis. This manuscript describes the first series of selective small-molecule inhibitors of Bcl-XL and provides promising leads for the development of efficacious therapeutics against solid tumors and chemoresistant cancer cell lines.
Nature Structural & Molecular Biology | 2015
Anthony N. Hodder; Brad E. Sleebs; Peter E. Czabotar; Michelle Gazdik; Yibin Xu; Matthew T. O'Neill; Sash Lopaticki; Thomas Nebl; Tony Triglia; Brian J. Smith; Kym N. Lowes; Justin A. Boddey; Alan F. Cowman
Plasmepsin V, an essential aspartyl protease of malaria parasites, has a key role in the export of effector proteins to parasite-infected erythrocytes. Consequently, it is an important drug target for the two most virulent malaria parasites of humans, Plasmodium falciparum and Plasmodium vivax. We developed a potent inhibitor of plasmepsin V, called WEHI-842, which directly mimics the Plasmodium export element (PEXEL). WEHI-842 inhibits recombinant plasmepsin V with a half-maximal inhibitory concentration of 0.2 nM, efficiently blocks protein export and inhibits parasite growth. We obtained the structure of P. vivax plasmepsin V in complex with WEHI-842 to 2.4-Å resolution, which provides an explanation for the strict requirements for substrate and inhibitor binding. The structure characterizes both a plant-like fold and a malaria-specific helix-turn-helix motif that are likely to be important in cleavage of effector substrates for export.