Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brad J. Nolen is active.

Publication


Featured researches published by Brad J. Nolen.


Nature | 2009

Characterization of two classes of small molecule inhibitors of Arp2/3 complex

Brad J. Nolen; N. Tomasevic; A. Russell; D. W. Pierce; Z. Jia; C. D. McCormick; J. Hartman; R. Sakowicz; Thomas D. Pollard

Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Processive phosphorylation of alternative splicing factor/splicing factor 2.

Brandon E. Aubol; Sutapa Chakrabarti; Jacky Chi Ki Ngo; Jennifer Shaffer; Brad J. Nolen; Xiang-Dong Fu; Gourisankar Ghosh; Joseph A. Adams

SR proteins, named for their multiple arginine/serine (RS) dipeptide repeats, are critical components of the spliceosome, influencing both constitutive and alternative splicing of pre-mRNA. SR protein function is regulated through phosphorylation of their RS domains by multiple kinases, including a family of evolutionarily conserved SR protein-specific kinases (SRPKs). The SRPK family of kinases is unique in that they are capable of phosphorylating repetitive RS domains with remarkable specificity and efficiency. Here, we carried out kinetic experiments specially developed to investigate how SRPK1 phosphorylates the model human SR protein, ASF/SF2. By using the start–trap strategy, we monitored the progress curve for ASF/SF2 phosphorylation in the absence and presence of an inhibitor peptide directed at the active site of SRPK1. ASF/SF2 modification is not altered when the inhibitor peptide (trap) is added with ATP (start). However, when the trap is added first and allowed to incubate for a specific delay time, the decrease in phosphate content of the enzyme–substrate complex follows a simple exponential decline corresponding to the release rate of SRPK1. These data demonstrate that SRPK1 phosphorylates a specific region within the RS domain of ASF/SF2 by using a fully processive catalytic mechanism, in which the splicing factor remains “locked” onto SRPK1 during RS domain modification.


eLife | 2013

Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP

Luke A. Helgeson; Brad J. Nolen

Nucleation promoting factors (NPFs) initiate branched actin network assembly by activating Arp2/3 complex, a branched actin filament nucleator. Cellular actin networks contain multiple NPFs, but how they coordinately regulate Arp2/3 complex is unclear. Cortactin is an NPF that activates Arp2/3 complex weakly on its own, but with WASP/N-WASP, another class of NPFs, potently activates. We dissect the mechanism of synergy and propose a model in which cortactin displaces N-WASP from nascent branches as a prerequisite for nucleation. Single-molecule imaging revealed that unlike WASP/N-WASP, cortactin remains bound to junctions during nucleation, and specifically targets junctions with a ∼160-fold increased on rate over filament sides. N-WASP must be dimerized for potent synergy, and targeted mutations indicate release of dimeric N-WASP from nascent branches limits nucleation. Mathematical modeling shows cortactin-mediated displacement but not N-WASP recycling or filament recruitment models can explain synergy. Our results provide a molecular basis for coordinate Arp2/3 complex regulation. DOI: http://dx.doi.org/10.7554/eLife.00884.001


Journal of Biological Chemistry | 2011

Mechanism of a Concentration-dependent Switch between Activation and Inhibition of Arp2/3 Complex by Coronin

Su-Ling Liu; Karen M. Needham; Jordan R. May; Brad J. Nolen

Arp2/3 complex is a key actin filament nucleator that assembles branched actin networks in response to cellular signals. The activity of Arp2/3 complex is regulated by both activating and inhibitory proteins. Coronins make up a large class of actin-binding proteins previously shown to inhibit Arp2/3 complex. Although coronins are known to play a role in controlling actin dynamics in diverse processes, including endocytosis and cell motility, the precise mechanism by which they regulate Arp2/3 complex is unclear. We conducted a detailed biochemical analysis of budding yeast coronin, Crn1, and found that it not only inhibits Arp2/3 complex but also activates it. We mapped regions required for activation and found that Crn1 contains a sequence called CA, which is conserved in WASp/Scar proteins, the prototypical activators of Arp2/3 complex. Point mutations in CA abolished activation of Arp2/3 complex by Crn1 in vitro. Confocal microscopy and quantitative actin patch tracking showed that these mutants had defective endocytic actin patch dynamics in Saccharomyces cerevisiae, indicating that activation of Arp2/3 complex by coronin is required for normal actin dynamics in vivo. The switch between the dual modes of regulation by Crn1 is controlled by concentration, and low concentrations of Crn1 enhance filament binding by Arp2/3 complex, whereas high concentrations block binding. Our data support a direct tethering recruitment model for activation of Arp2/3 complex by Crn1 and suggest that Crn1 indirectly inhibits Arp2/3 complex by blocking it from binding actin filaments.


Nature Structural & Molecular Biology | 2013

Structural basis for regulation of Arp2/3 complex by GMF

Qing Luan; Brad J. Nolen

The Arp2/3 complex mediates formation of complex cellular structures such as lamellipodia by nucleating branched actin filaments. Arp2/3-complex activity is precisely controlled by over a dozen regulators, yet the structural mechanism by which regulators interact with the complex is unknown. GMF is a recently discovered regulator of the Arp2/3 complex that can inhibit nucleation and disassemble branches. We solved the structure of the 240-kDa assembly of Mus musculus GMF and Bos taurus Arp2/3 complex and found that GMF binds the barbed end of Arp2, overlapping with the proposed binding site of WASP-family proteins. The structure suggests that GMF can bind branch junctions in the manner that cofilin binds filament sides, consistent with a modified cofilin-like mechanism for debranching by GMF. The GMF-Arp2 interface reveals how the ADF-H actin-binding domain in GMF is exploited to specifically recognize Arp2/3 complex and not actin.


Journal of Biological Chemistry | 2014

Interactions with Actin Monomers, Actin Filaments, and Arp2/3 Complex Define the Roles of WASP Family Proteins and Cortactin in Coordinately Regulating Branched Actin Networks

Luke A. Helgeson; Julianna G. Prendergast; Andrew R. Wagner; Max Rodnick-Smith; Brad J. Nolen

Background: How cortactin and WASP proteins coordinately regulate branched actin assembly is poorly understood. Results: The Arp2/3 complex- and actin-interacting regions of cortactin and WASP proteins are functionally distinct and tailored to their regulatory roles. Conclusion: Mechanistic distinctions between activators are important in allowing coordinate regulation of branched actin networks. Significance: Understanding mechanistic distinctions between activators is required to understand cellular structures like lamellipodia. Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.


Current Biology | 2013

Dip1 Defines a Class of Arp2/3 Complex Activators that Function without Preformed Actin Filaments

Andrew R. Wagner; Qing Luan; Su-Ling Liu; Brad J. Nolen

BACKGROUND Arp2/3 complex is a key actin cytoskeletal regulator that creates branched actin filament networks in response to cellular signals. WASP-activated Arp2/3 complex assembles branched actin networks by nucleating new filaments from the sides of pre-existing ones. WASP-mediated activation requires seed filaments, to which the WASP-bound Arp2/3 complex can bind to form branches, but the source of the first substrate filaments for branching is unknown. RESULTS Here we show that Dip1, a member of the WISH/DIP/SPIN90 family of actin regulators, potently activates Arp2/3 complex without preformed filaments. Unlike other Arp2/3 complex activators, Dip1 does not bind actin monomers or filaments, and it interacts with the complex using a non-WASP-like binding mode. In addition, Dip1-activated Arp2/3 complex creates linear instead of branched actin filament networks. CONCLUSIONS Our data show the mechanism by which Dip1 and other WISH/DIP/SPIN90 proteins can provide seed filaments to Arp2/3 complex to serve as master switches in initiating branched actin assembly. This mechanism is distinct from other known activators of Arp2/3 complex.


Journal of Biological Chemistry | 2008

Structure and Biochemical Properties of Fission Yeast Arp2/3 Complex Lacking the Arp2 Subunit

Brad J. Nolen; Thomas D. Pollard

Arp2/3 (actin-related protein 2/3) complex is a seven-subunit complex that nucleates branched actin filaments in response to cellular signals. Nucleation-promoting factors such as WASp/Scar family proteins activate the complex by facilitating the activating conformational change and recruiting the first actin monomer for the daughter branch. Here we address the role of the Arp2 subunit in the function of Arp2/3 complex by isolating a version of the complex lacking Arp2 (Arp2Δ Arp2/3 complex) from fission yeast. An x-ray crystal structure of the ΔArp2 Arp2/3 complex showed that the rest of the complex is unperturbed by the loss of Arp2. However, the Arp2Δ Arp2/3 complex was inactive in actin nucleation assays, indicating that Arp2 is essential to form a branch. A fluorescence anisotropy assay showed that Arp2 does not contribute to the affinity of the complex for Wsp1-VCA, a Schizosaccharomyces pombe nucleation-promoting factor protein. Fluorescence resonance energy transfer experiments showed that the loss of Arp2 does not prevent VCA from recruiting an actin monomer to the complex. Truncation of the N terminus of ARPC5, the smallest subunit in the complex, increased the yield of Arp2Δ Arp2/3 complex during purification but did not compromise nucleation activity of the full Arp2/3 complex.


ChemMedChem | 2012

Structural Characterization and Computer‐Aided Optimization of a Small‐Molecule Inhibitor of the Arp2/3 Complex, a Key Regulator of the Actin Cytoskeleton

Andrew W. Baggett; Zoe Cournia; Min Suk Han; George Patargias; Adam C. Glass; Shih-Yuan Liu; Brad J. Nolen

CK‐666 (1) is a recently discovered small‐molecule inhibitor of the actin‐related protein 2/3 (Arp2/3) complex, a key actin cytoskeleton regulator with roles in bacterial pathogenesis and cancer cell motility. Although 1 is commercially available, the crystal structure of Arp2/3 complex with 1 bound has not been reported, making its mechanism of action uncertain. Furthermore, its relatively low potency increases its potential for off‐target effects in vivo, complicating interpretation of its influence in cell biological studies and precluding its clinical use. Herein we report the crystal structure of 1 bound to Arp2/3 complex, which reveals that 1 binds between the Arp2 and Arp3 subunits to stabilize the inactive conformation of the complex. Based on the crystal structure, we used computational docking and free‐energy perturbation calculations of monosubstituted derivatives of 1 to guide optimization efforts. Biochemical assays of ten newly synthesized compounds led to the identification of compound 2, which exhibits a threefold increase in inhibitory activity in vitro relative to 1. In addition, our computational analyses unveiled a surface groove at the interface of the Arp2 and Arp3 subunits that can be exploited for additional structure‐based optimization.


Journal of Molecular Biology | 2009

Nucleotide- and activator-dependent structural and dynamic changes of arp2/3 complex monitored by hydrogen/deuterium exchange and mass spectrometry.

Wendy D. Zencheck; Hui Xiao; Brad J. Nolen; Ruth Hogue Angeletti; Thomas D. Pollard; Steven C. Almo

Arp2/3 complex plays a central role in the de novo nucleation of filamentous actin as branches on existing filaments. The complex must bind ATP, protein activators [e.g., Wiskott-Aldrich syndrome protein (WASp)], and the side of an actin filament to form a new actin filament. Amide hydrogen/deuterium exchange coupled with mass spectrometry was used to examine the structural and dynamic properties of the mammalian Arp2/3 complex in the presence of both ATP and the activating peptide segment from WASp. Changes in the rate of hydrogen exchange indicate that ATP binding causes conformational rearrangements of Arp2 and Arp3 that are transmitted allosterically to the Arp complex (ARPC)1, ARPC2, ARPC4, and ARPC5 subunits. These data are consistent with the closure of nucleotide-binding cleft of Arp3 upon ATP binding, resulting in structural rearrangements that propagate throughout the complex. Binding of the VCA domain of WASp to ATP-Arp2/3 further modulates the rates of hydrogen exchange in these subunits, indicating that a global conformational reorganization is occurring. These effects may include the direct binding of activators to Arp3, Arp2, and ARPC1; alterations in the relative orientations of Arp2 and Arp3; and the long-range transmission of activator-dependent signals to segments proposed to be involved in binding the F-actin mother filament.

Collaboration


Dive into the Brad J. Nolen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge