Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas D. Pollard is active.

Publication


Featured researches published by Thomas D. Pollard.


Science | 2009

Actin, a central player in cell shape and movement.

Thomas D. Pollard; John A. Cooper

The protein actin forms filaments that provide cells with mechanical support and driving forces for movement. Actin contributes to biological processes such as sensing environmental forces, internalizing membrane vesicles, moving over surfaces, and dividing the cell in two. These cellular activities are complex; they depend on interactions of actin monomers and filaments with numerous other proteins. Here, we present a summary of the key questions in the field and suggest how those questions might be answered. Understanding actin-based biological phenomena will depend on identifying the participating molecules and defining their molecular mechanisms. Comparisons of quantitative measurements of reactions in live cells with computer simulations of mathematical models will also help generate meaningful insights.


Nature | 2000

Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins

Laurent Blanchoin; Kurt J. Amann; Henry N. Higgs; Jean-Baptiste Marchand; Donald A. Kaiser; Thomas D. Pollard

Most nucleated cells crawl about by extending a pseudopod that is driven by the polymerization of actin filaments in the cytoplasm behind the leading edge of the plasma membrane. These actin filaments are linked into a network by Y-branches, with the pointed end of each filament attached to the side of another filament and the rapidly growing barbed end facing forward. Because Arp2/3 complex nucleates actin polymerization and links the pointed end to the side of another filament in vitro, a dendritic nucleation model has been proposed in which Arp2/3 complex initiates filaments from the sides of older filaments. Here we report, by using a light microscopy assay, many new features of the mechanism. Branching occurs during, rather than after, nucleation by Arp2/3 complex activated by the Wiskott–Aldrich syndrome protein (WASP) or Scar protein; capping protein and profilin act synergistically with Arp2/3 complex to favour branched nucleation; phosphate release from aged actin filaments favours dissociation of Arp2/3 complex from the pointed ends of filaments; and branches created by Arp2/3 complex are relatively rigid. These properties result in the automatic assembly of the branched actin network after activation by proteins of the WASP/Scar family and favour the selective disassembly of proximal regions of the network.


Cell | 2006

Control of the Assembly of ATP- and ADP-Actin by Formins and Profilin

David R. Kovar; Elizabeth S. Harris; Rachel Mahaffy; Henry N. Higgs; Thomas D. Pollard

Formin proteins nucleate actin filaments, remaining processively associated with the fast-growing barbed ends. Although formins possess common features, the diversity of functions and biochemical activities raised the possibility that formins differ in fundamental ways. Further, a recent study suggested that profilin and ATP hydrolysis are both required for processive elongation mediated by the formin mDia1. We used total internal reflection fluorescence microscopy to observe directly individual actin filament polymerization in the presence of two mammalian formins (mDia1 and mDia2) and two yeast formins (Bni1p and Cdc12p). We show that these diverse formins have the same basic properties: movement is processive in the absence or presence of profilin; profilin accelerates elongation; and actin ATP hydrolysis is not required for processivity. These results suggest that diverse formins are mechanistically similar, but the rates of particular assembly steps vary.


Journal of Muscle Research and Cell Motility | 1983

Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization

John A. Cooper; Simon B. Walker; Thomas D. Pollard

SummaryThe fluorescence of pyrene-labelled actin is much higher after polymerization. We have characterized in detail the polymerization properties of pyrene actin and report that native and pyrene actin are identical using the following criteria: (1) the time course of polymerization; (2) the elongation rate constants; (3) the intrinsic viscosity; and (4) the critical concentration. Native and pyrene actin copolymerize. Fluorescence of polymerized pyrene actin is 7–10 times higher than monomer. The fluorescent signal is proportional to polymer weight concentration and is insensitive to filament length distribution. Bleaching can be minimized by appropriate filters to allow continuous monitoring of signal. Measurements do not influence polymerization kinetics. This establishes that pyrene actin fluorescence is a valid assay for actin polymerization that is more sensitive than any other current assay.


Cold Spring Harbor Perspectives in Biology | 2016

Actin and Actin-Binding Proteins

Thomas D. Pollard

Organisms from all domains of life depend on filaments of the protein actin to provide structure and to support internal movements. Many eukaryotic cells use forces produced by actin polymerization for their motility, and myosin motor proteins use ATP hydrolysis to produce force on actin filaments. Actin polymerizes spontaneously, followed by hydrolysis of a bound adenosine triphosphate (ATP). Dissociation of the γ-phosphate prepares the polymer for disassembly. This review provides an overview of the properties of actin and shows how dozens of proteins control both the assembly and disassembly of actin filaments. These players catalyze nucleotide exchange on actin monomers, initiate polymerization, promote phosphate dissociation, cap the ends of polymers, cross-link filaments to each other and other cellular components, and sever filaments.


Developmental Cell | 2003

Spatial and Temporal Pathway for Assembly and Constriction of the Contractile Ring in Fission Yeast Cytokinesis

Jian-Qiu Wu; Jeffrey R. Kuhn; David R. Kovar; Thomas D. Pollard

Microscopy of fluorescent fusion proteins and genetic dependencies show that fission yeast assemble and constrict a cytokinetic contractile ring in a precisely timed, sequential order. More than 90 min prior to separation of the spindle pole bodies (SPB), the anillin-like protein (Mid1p) migrates from the nucleus and specifies a broad band of cortex around the equator as the division site. Between 10 min before and 2 min after SPB separation, conventional myosin-II (Myo2p), IQGAP (Rng2p), PCH protein (Cdc15p), and formin (Cdc12p) join the broad band independent of actin filaments. Over the subsequent 10 min prior to anaphase B, this broad band of proteins condenses into a contractile ring including actin, tropomyosin (Cdc8p), and alpha-actinin (Ain1p). During anaphase B, unconventional myosin-II (Myp2p) joins the ring followed by the septin (Spn1p). Ring contraction and disassembly begin 37 min after SPB separation. This spatial and temporal hierarchy provides the framework for analysis of molecular mechanisms.


Journal of Cell Biology | 2003

The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin.

David R. Kovar; Jeffrey R. Kuhn; Andrea L. Tichy; Thomas D. Pollard

Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings. Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly-l-proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly-l-proline.


Nature | 2009

Characterization of two classes of small molecule inhibitors of Arp2/3 complex

Brad J. Nolen; N. Tomasevic; A. Russell; D. W. Pierce; Z. Jia; C. D. McCormick; J. Hartman; R. Sakowicz; Thomas D. Pollard

Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.


Nature Cell Biology | 2001

Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex

Jean-Baptiste Marchand; Donald A. Kaiser; Thomas D. Pollard; Henry N. Higgs

The Wiskott–Aldrich-syndrome protein (WASP) regulates polymerization of actin by the Arp2/3 complex. Here we show, using fluorescence anisotropy assays, that the carboxy-terminal WA domain of WASP binds to a single actin monomer with a Kd of 0.6 μM in an equilibrium with rapid exchange rates. Both WH-2 and CA sequences contribute to actin binding. A favourable ΔH of −10 kcal mol−1 drives binding. The WA domain binds to the Arp2/3 complex with a Kd of 0.9 μM; both the C and A sequences contribute to binding to the Arp2/3 complex. Wiskott–Aldrich-syndrome mutations in the WA domain that alter nucleation by the Arp2/3 complex over a tenfold range without affecting affinity for actin or the Arp2/3 complex indicate that there may be an activation step in the nucleation pathway. Actin filaments stimulate nucleation by producing a fivefold increase in the affinity of WASP-WA for the Arp2/3 complex.


Nature | 2003

The cytoskeleton, cellular motility and the reductionist agenda

Thomas D. Pollard

Eukaryotic cells depend on cytoskeletal polymers and molecular motors to establish their asymmetrical shapes, to transport intracellular constituents and to drive their motility. Cell biologists are using diverse experimental approaches to understand the molecular basis of cellular movements and to explain why defects in the component proteins cause disease. Much of the molecular machinery for motility evolved in early eukaryotes, so a limited set of general principles can explain the motility of most cells.

Collaboration


Dive into the Thomas D. Pollard's collaboration.

Top Co-Authors

Avatar

Donald A. Kaiser

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela Maupin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Cooper

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ueli Aebi

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge