Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brad J. Schoenfeld is active.

Publication


Featured researches published by Brad J. Schoenfeld.


Journal of Strength and Conditioning Research | 2010

The mechanisms of muscle hypertrophy and their application to resistance training.

Brad J. Schoenfeld

The quest to increase lean body mass is widely pursued by those who lift weights. Research is lacking, however, as to the best approach for maximizing exercise-induced muscle growth. Bodybuilders generally train with moderate loads and fairly short rest intervals that induce high amounts of metabolic stress. Powerlifters, on the other hand, routinely train with high-intensity loads and lengthy rest periods between sets. Although both groups are known to display impressive muscularity, it is not clear which method is superior for hypertrophic gains. It has been shown that many factors mediate the hypertrophic process and that mechanical tension, muscle damage, and metabolic stress all can play a role in exercise-induced muscle growth. Therefore, the purpose of this paper is twofold: (a) to extensively review the literature as to the mechanisms of muscle hypertrophy and their application to exercise training and (b) to draw conclusions from the research as to the optimal protocol for maximizing muscle growth.


Journal of Strength and Conditioning Research | 2010

Squatting Kinematics and Kinetics and Their Application to Exercise Performance

Brad J. Schoenfeld

The squat is one of the most frequently used exercises in the field of strength and conditioning. Considering the complexity of the exercise and the many variables related to performance, understanding squat biomechanics is of great importance for both achieving optimal muscular development as well as reducing the prospect of a training-related injury. Therefore, the purpose of this article is 2-fold: first, to examine kinematics and kinetics of the dynamic squat with respect to the ankle, knee, hip and spinal joints and, second, to provide recommendations based on these biomechanical factors for optimizing exercise performance.


Sports Medicine | 2013

Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training

Brad J. Schoenfeld

It is well established that regimented resistance training can promote increases in muscle hypertrophy. The prevailing body of research indicates that mechanical stress is the primary impetus for this adaptive response and studies show that mechanical stress alone can initiate anabolic signalling. Given the dominant role of mechanical stress in muscle growth, the question arises as to whether other factors may enhance the post-exercise hypertrophic response. Several researchers have proposed that exercise-induced metabolic stress may in fact confer such an anabolic effect and some have even suggested that metabolite accumulation may be more important than high force development in optimizing muscle growth. Metabolic stress pursuant to traditional resistance training manifests as a result of exercise that relies on anaerobic glycolysis for adenosine triphosphate production. This, in turn, causes the subsequent accumulation of metabolites, particularly lactate and H+. Acute muscle hypoxia associated with such training methods may further heighten metabolic buildup. Therefore, the purpose of this paper will be to review the emerging body of research suggesting a role for exercise-induced metabolic stress in maximizing muscle development and present insights as to the potential mechanisms by which these hypertrophic adaptations may occur. These mechanisms include increased fibre recruitment, elevated systemic hormonal production, alterations in local myokines, heightened production of reactive oxygen species and cell swelling. Recommendations are provided for potential areas of future research on the subject.


Journal of Strength and Conditioning Research | 2012

Does Exercise-Induced Muscle Damage Play a Role in Skeletal Muscle Hypertrophy?

Brad J. Schoenfeld

Exercise-induced muscle damage (EIMD) occurs primarily from the performance of unaccustomed exercise, and its severity is modulated by the type, intensity, and duration of training. Although concentric and isometric actions contribute to EIMD, the greatest damage to muscle tissue is seen with eccentric exercise, where muscles are forcibly lengthened. Damage can be specific to just a few macromolecules of tissue or result in large tears in the sarcolemma, basal lamina, and supportive connective tissue, and inducing injury to contractile elements and the cytoskeleton. Although EIMD can have detrimental short-term effects on markers of performance and pain, it has been hypothesized that the associated skeletal muscle inflammation and increased protein turnover are necessary for long-term hypertrophic adaptations. A theoretical basis for this belief has been proposed, whereby the structural changes associated with EIMD influence gene expression, resulting in a strengthening of the tissue and thus protection of the muscle against further injury. Other researchers, however, have questioned this hypothesis, noting that hypertrophy can occur in the relative absence of muscle damage. Therefore, the purpose of this article will be twofold: (a) to extensively review the literature and attempt to determine what, if any, role EIMD plays in promoting skeletal muscle hypertrophy and (b) to make applicable recommendations for resistance training program design.


Journal of Strength and Conditioning Research | 2015

Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men.

Brad J. Schoenfeld; Mark D. Peterson; Dan Ogborn; Bret Contreras; Gul Tiryaki Sonmez

Abstract Schoenfeld, BJ, Peterson, MD, Ogborn, D, Contreras, B, and Sonmez, GT. Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J Strength Cond Res 29(10): 2954–2963, 2015—The purpose of this study was to compare the effect of low- versus high-load resistance training (RT) on muscular adaptations in well-trained subjects. Eighteen young men experienced in RT were matched according to baseline strength and then randomly assigned to 1 of 2 experimental groups: a low-load RT routine (LL) where 25–35 repetitions were performed per set per exercise (n = 9) or a high-load RT routine (HL) where 8–12 repetitions were performed per set per exercise (n = 9). During each session, subjects in both groups performed 3 sets of 7 different exercises representing all major muscles. Training was performed 3 times per week on nonconsecutive days, for a total of 8 weeks. Both HL and LL conditions produced significant increases in thickness of the elbow flexors (5.3 vs. 8.6%, respectively), elbow extensors (6.0 vs. 5.2%, respectively), and quadriceps femoris (9.3 vs. 9.5%, respectively), with no significant differences noted between groups. Improvements in back squat strength were significantly greater for HL compared with LL (19.6 vs. 8.8%, respectively), and there was a trend for greater increases in 1 repetition maximum (1RM) bench press (6.5 vs. 2.0%, respectively). Upper body muscle endurance (assessed by the bench press at 50% 1RM to failure) improved to a greater extent in LL compared with HL (16.6 vs. −1.2%, respectively). These findings indicate that both HL and LL training to failure can elicit significant increases in muscle hypertrophy among well-trained young men; however, HL training is superior for maximizing strength adaptations.


Journal of The International Society of Sports Nutrition | 2013

The effect of protein timing on muscle strength and hypertrophy: a meta-analysis

Brad J. Schoenfeld; Alan Albert Aragon; James W. Krieger

Protein timing is a popular dietary strategy designed to optimize the adaptive response to exercise. The strategy involves consuming protein in and around a training session in an effort to facilitate muscular repair and remodeling, and thereby enhance post-exercise strength- and hypertrophy-related adaptations. Despite the apparent biological plausibility of the strategy, however, the effectiveness of protein timing in chronic training studies has been decidedly mixed. The purpose of this paper therefore was to conduct a multi-level meta-regression of randomized controlled trials to determine whether protein timing is a viable strategy for enhancing post-exercise muscular adaptations. The strength analysis comprised 478 subjects and 96 ESs, nested within 41 treatment or control groups and 20 studies. The hypertrophy analysis comprised 525 subjects and 132 ESs, nested with 47 treatment or control groups and 23 studies. A simple pooled analysis of protein timing without controlling for covariates showed a small to moderate effect on muscle hypertrophy with no significant effect found on muscle strength. In the full meta-regression model controlling for all covariates, however, no significant differences were found between treatment and control for strength or hypertrophy. The reduced model was not significantly different from the full model for either strength or hypertrophy. With respect to hypertrophy, total protein intake was the strongest predictor of ES magnitude. These results refute the commonly held belief that the timing of protein intake in and around a training session is critical to muscular adaptations and indicate that consuming adequate protein in combination with resistance exercise is the key factor for maximizing muscle protein accretion.


Journal of Strength and Conditioning Research | 2014

Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men.

Brad J. Schoenfeld; Nicholas A. Ratamess; Mark D. Peterson; Bret Contreras; Gul Tiryaki Sonmez; Brent A. Alvar

Abstract Schoenfeld, BJ, Ratamess, NA, Peterson, MD, Contreras, B, Sonmez, GT, and Alvar, BA. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res 28(10): 2909–2918, 2014—Regimented resistance training has been shown to promote marked increases in skeletal muscle mass. Although muscle hypertrophy can be attained through a wide range of resistance training programs, the principle of specificity, which states that adaptations are specific to the nature of the applied stimulus, dictates that some programs will promote greater hypertrophy than others. Research is lacking, however, as to the best combination of variables required to maximize hypertophic gains. The purpose of this study was to investigate muscular adaptations to a volume-equated bodybuilding-type training program vs. a powerlifting-type routine in well-trained subjects. Seventeen young men were randomly assigned to either a hypertrophy-type resistance training group that performed 3 sets of 10 repetition maximum (RM) with 90 seconds rest or a strength-type resistance training (ST) group that performed 7 sets of 3RM with a 3-minute rest interval. After 8 weeks, no significant differences were noted in muscle thickness of the biceps brachii. Significant strength differences were found in favor of ST for the 1RM bench press, and a trend was found for greater increases in the 1RM squat. In conclusion, this study showed that both bodybuilding- and powerlifting-type training promote similar increases in muscular size, but powerlifting-type training is superior for enhancing maximal strength.


European Journal of Sport Science | 2016

Muscular adaptations in low- versus high-load resistance training: A meta-analysis

Brad J. Schoenfeld; Jacob M. Wilson; Ryan P. Lowery; James W. Krieger

Abstract There has been much debate as to optimal loading strategies for maximising the adaptive response to resistance exercise. The purpose of this paper therefore was to conduct a meta-analysis of randomised controlled trials to compare the effects of low-load (≤60% 1 repetition maximum [RM]) versus high-load (≥65% 1 RM) training in enhancing post-exercise muscular adaptations. The strength analysis comprised 251 subjects and 32 effect sizes (ESs), nested within 20 treatment groups and 9 studies. The hypertrophy analysis comprised 191 subjects and 34 ESs, nested with 17 treatment groups and 8 studies. There was a trend for strength outcomes to be greater with high loads compared to low loads (difference = 1.07 ± 0.60; CI: −0.18, 2.32; p = 0.09). The mean ES for low loads was 1.23 ± 0.43 (CI: 0.32, 2.13). The mean ES for high loads was 2.30 ± 0.43 (CI: 1.41, 3.19). There was a trend for hypertrophy outcomes to be greater with high loads compared to low loads (difference = 0.43 ± 0.24; CI: −0.05, 0.92; p = 0.076). The mean ES for low loads was 0.39 ± 0.17 (CI: 0.05, 0.73). The mean ES for high loads was 0.82 ± 0.17 (CI: 0.49, 1.16). In conclusion, training with loads ≤50% 1 RM was found to promote substantial increases in muscle strength and hypertrophy in untrained individuals, but a trend was noted for superiority of heavy loading with respect to these outcome measures with null findings likely attributed to a relatively small number of studies on the topic.


Journal of The International Society of Sports Nutrition | 2013

Nutrient timing revisited: is there a post-exercise anabolic window?

Alan Albert Aragon; Brad J. Schoenfeld

Nutrient timing is a popular nutritional strategy that involves the consumption of combinations of nutrients--primarily protein and carbohydrate--in and around an exercise session. Some have claimed that this approach can produce dramatic improvements in body composition. It has even been postulated that the timing of nutritional consumption may be more important than the absolute daily intake of nutrients. The post-exercise period is widely considered the most critical part of nutrient timing. Theoretically, consuming the proper ratio of nutrients during this time not only initiates the rebuilding of damaged muscle tissue and restoration of energy reserves, but it does so in a supercompensated fashion that enhances both body composition and exercise performance. Several researchers have made reference to an anabolic “window of opportunity” whereby a limited time exists after training to optimize training-related muscular adaptations. However, the importance - and even the existence - of a post-exercise ‘window’ can vary according to a number of factors. Not only is nutrient timing research open to question in terms of applicability, but recent evidence has directly challenged the classical view of the relevance of post-exercise nutritional intake with respect to anabolism. Therefore, the purpose of this paper will be twofold: 1) to review the existing literature on the effects of nutrient timing with respect to post-exercise muscular adaptations, and; 2) to draw relevant conclusions that allow practical, evidence-based nutritional recommendations to be made for maximizing the anabolic response to exercise.


Journal of Sports Sciences | 2017

Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis

Brad J. Schoenfeld; Dan Ogborn; James W. Krieger

ABSTRACT The purpose of this paper was to systematically review the current literature and elucidate the effects of total weekly resistance training (RT) volume on changes in measures of muscle mass via meta-regression. The final analysis comprised 34 treatment groups from 15 studies. Outcomes for weekly sets as a continuous variable showed a significant effect of volume on changes in muscle size (P = 0.002). Each additional set was associated with an increase in effect size (ES) of 0.023 corresponding to an increase in the percentage gain by 0.37%. Outcomes for weekly sets categorised as lower or higher within each study showed a significant effect of volume on changes in muscle size (P = 0.03); the ES difference between higher and lower volumes was 0.241, which equated to a percentage gain difference of 3.9%. Outcomes for weekly sets as a three-level categorical variable (<5, 5–9 and 10+ per muscle) showed a trend for an effect of weekly sets (P = 0.074). The findings indicate a graded dose-response relationship whereby increases in RT volume produce greater gains in muscle hypertrophy.

Collaboration


Dive into the Brad J. Schoenfeld's collaboration.

Top Co-Authors

Avatar

Bret Contreras

Auckland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alex S. Ribeiro

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Edilson Serpeloni Cyrino

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

James W. Krieger

California State University

View shared research outputs
Top Co-Authors

Avatar

Alan Albert Aragon

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crisieli M. Tomeleri

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John B. Cronin

Auckland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge