Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brad R. Weeks is active.

Publication


Featured researches published by Brad R. Weeks.


Journal of Nutrition | 2007

Immunomodulatory Effects of (n-3) Fatty Acids: Putative Link to Inflammation and Colon Cancer

Robert S. Chapkin; Laurie A. Davidson; Lan Ly; Brad R. Weeks; Joanne R. Lupton; David N. McMurray

Chronic inflammation and colorectal cancer are closely linked. Although the overall mechanisms of inflammation-associated gastrointestinal carcinogenesis are complex, it is clear that antiinflammatory therapy is efficacious against neoplastic progression and malignant conversion. From a dietary perspective, fish oil containing (n-3) polyunsaturated fatty acids (PUFAs) has antiinflammatory properties, but for years the mechanism has remained obscure. Of relevance to the immune system in the intestine, we showed that (n-3) PUFA feeding alters the balance between CD4+ T-helper (Th1 and Th2) subsets by directly suppressing Th1 cell development (i.e., clonal expansion). This is noteworthy because Th1 cells mediate inflammatory diseases and resistance to intracellular pathogens or allergic hypersensitivity, and Th2 cells mediate resistance to extracellular pathogens. Therefore, any changes induced by (n-3) PUFAs in T-cell subset balance and function are important because the outcome is expected to suppress the development of autoimmune diseases and possibly the occurrence of colon cancer. Precisely how the immunomodulatory effects of (n-3) PUFAs influence inflammation-associated colonic tumor development is the subject of an ongoing investigation.


Cancer Research | 2008

Reduced Colitis-Associated Colon Cancer in Fat-1 (n-3 Fatty Acid Desaturase) Transgenic Mice

Qian Jia; Joanne R. Lupton; Roger Smith; Brad R. Weeks; Evelyn S. Callaway; Laurie A. Davidson; Wooki Kim; Yang Yi Fan; Peiying Yang; Robert A. Newman; Jing X. Kang; David N. McMurray; Robert S. Chapkin

Bioactive food components containing n-3 polyunsaturated fatty acids (PUFA) modulate multiple determinants that link inflammation to cancer initiation and progression. Therefore, in this study, fat-1 transgenic mice, which convert endogenous n-6 PUFA to n-3 PUFA in multiple tissues, were injected with azoxymethane followed by three cycles of dextran sodium sulfate (DSS) to induce colitis-associated cancer. Fat-1 mice exhibited a reduced number of colonic adenocarcinomas per mouse (1.05 +/- 0.29 versus 2.12 +/- 0.51, P = 0.033), elevated apoptosis (P = 0.03), and a decrease in n-6 PUFA-derived eicosanoids, compared with wild-type (wt) mice. To determine whether the chemoprotective effects of n-3 PUFA could be attributed to its pleiotropic anti-inflammatory properties, colonic inflammation and injury scores were evaluated 5 days after DSS exposure followed by either a 3-day or 2-week recovery period. There was no effect of n-3 PUFA at 3 days. However, following a 2-week recovery period, colonic inflammation and ulceration scores returned to pretreatment levels compared with 3-day recovery only in fat-1 mice. For the purpose of examining the specific reactivity of lymphoid elements in the intestine, CD3(+) T cells, CD4(+) T helper cells, and macrophages from colonic lamina propria were quantified. Comparison of 3-day versus 2-week recovery time points revealed that fat-1 mice exhibited decreased (P < 0.05) CD3(+), CD4(+) T helper, and macrophage cell numbers per colon as compared with wt mice. These results suggest that the antitumorigenic effect of n-3 PUFA may be mediated, in part, via its anti-inflammatory properties.


Infection and Immunity | 2007

T Cells Are Essential for Bacterial Clearance, and Gamma Interferon, Tumor Necrosis Factor Alpha, and B Cells Are Crucial for Disease Development in Coxiella burnetii Infection in Mice

Masako Andoh; Guoquan Zhang; Kasi E. Russell-Lodrigue; Heather R. Shive; Brad R. Weeks; James E. Samuel

ABSTRACT Coxiella burnetii, the etiological agent of Q fever, has two phase variants. Phase I has a complete lipopolysaccharide (LPS), is highly virulent, and causes Q fever in humans and pathology in experimental animals. Phase II lacks an LPS O side chain, is avirulent, and does not grow well in immunocompetent animals. To understand the pathogenicity of Q fever, we investigated the roles of immune components in animals infected with Nine Mile phase I (NM I) or Nine Mile phase II (NM II) bacteria. Immunodeficient mice, including SCID mice (deficient in T and B cells), SCIDbg mice (deficient in T, B, and NK cells), nude mice (deficient in T cells), muMT mice (deficient in B cells), bg mice (deficient in NK cells), mice deficient in tumor necrosis factor alpha (TNF-α−/− mice), and mice deficient in gamma interferon (IFN-γ−/− mice), were compared for their responses to infection. SCID, SCIDbg, nude, and IFN-γ−/− mice showed high susceptibility to NM I, and TNF-α−/− mice showed modest susceptibility. Disease caused by NM I in SCID, SCIDbg, and nude mice progressed slowly, while disease in IFN-γ−/− and TNF-α−/− mice advanced rapidly. B- and NK-cell deficiencies did not enhance clinical disease development or alter bacterial clearance but did increase the severity of histopathological changes, particularly in the absence of B cells. Mice infected with NM II showed no apparent clinical disease, but T-cell-deficient mice had histopathological changes. These results suggest that T cells are critical for clearance of C. burnetii, either NM I or NM II, that IFN-γ and TNF-α are essential for the early control of infection, and that B cells are important for the prevention of tissue damage.


Infection and Immunity | 2009

Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever.

Kasi E. Russell-Lodrigue; Masako Andoh; M. W. J Poels; Heather R. Shive; Brad R. Weeks; Guoquan Zhang; Claudia Tersteeg; T Masegi; A Hotta; Tsuyoshi Yamaguchi; Hideto Fukushi; Katsuya Hirai; David N. McMurray; James E. Samuel

ABSTRACT Q fever is a zoonotic disease of worldwide significance caused by the obligate intracellular bacterium Coxiella burnetii. Humans with Q fever may experience an acute flu-like illness and pneumonia and/or chronic hepatitis or endocarditis. Various markers demonstrate significant phylogenetic separation between and clustering among isolates from acute and chronic human disease. The clinical and pathological responses to infection with phase I C. burnetii isolates from the following four genomic groups were evaluated in immunocompetent and immunocompromised mice and in guinea pig infection models: group I (Nine Mile, African, and Ohio), group IV (Priscilla and P), group V (G and S), and group VI (Dugway). Isolates from all of the groups produced disease in the SCID mouse model, and genogroup-consistent trends were noted in cytokine production in response to infection in the immunocompetent-mouse model. Guinea pigs developed severe acute disease when aerosol challenged with group I isolates, mild to moderate acute disease in response to group V isolates, and no acute disease when infected with group IV and VI isolates. C. burnetii isolates have a range of disease potentials; isolates within the same genomic group cause similar pathological responses, and there is a clear distinction in strain virulence between these genomic groups.


Journal of Nutrition | 2012

Th17 Cell Accumulation Is Decreased during Chronic Experimental Colitis by (n-3) PUFA in Fat-1 Mice

Jennifer M. Monk; Qian Jia; Evelyn S. Callaway; Brad R. Weeks; Robert C. Alaniz; David N. McMurray; Robert S. Chapkin

During colon inflammation, Th17 cells and immunosuppressive regulatory T cells (Treg) are thought to play promotive and preventative roles, respectively. Dietary (n-3) PUFA favorably modulate intestinal inflammation in part by downregulating T-cell activation and functionality. We used the Fat-1 mouse, a genetic model that synthesizes long-chain (n-3) PUFA de novo, to test the hypothesis that (n-3) PUFA protect against colonic inflammation by modulating the polarization of Treg and Th17 cells during colitis. Male and female wild-type (WT) and Fat-1 mice were administered dextran sodium sulfate (DSS) in the drinking water (2.5%) to induce acute (5 d DSS) or chronic (3 cycles DSS) colitis and the percentage of Treg and Th17 cells residing locally [colonic lamina propria (cLP)] and systemically (spleen) was determined by flow cytometry. The percentage of Treg in either tissue site was unaffected by genotype (P > 0.05); however, during chronic colitis, the percentage of Th17 cells residing in both the spleen and cLP was lower in Fat-1 mice compared to WT mice (P < 0.05). Colonic mucosal mRNA expression of critical Th17 cell cytokines and chemokine receptors (IL-17F, IL-21, and CCR6) were lower, whereas expression of the Th17 cell suppressive cytokine, IL-27, was greater in Fat-1 mice compared to WT mice during chronic colitis (P < 0.05). Moreover, colon histological scores were improved in Fat-1 mice (P < 0.05). Collectively, these results demonstrate for the first time, to our knowledge, that (n-3) PUFA can modulate the colonic mucosal microenvironment to suppress Th17 cell accumulation and inflammatory damage following the induction of chronic colitis.


PLOS ONE | 2012

Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis.

Jennifer M. Monk; Tim Y. Hou; Harmony F. Turk; Brad R. Weeks; Chaodong Wu; David N. McMurray; Robert S. Chapkin

Clinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis, attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local inflammatory site) and spleen (systemic inflammatory site), and we hypothesized that n-3 PUFA would reduce the percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF) diet (59.2% kcal) alone or an isocaloric HF diet supplemented with fish oil (HF-FO) for 12 weeks. Colitis was induced via a 2.5% trinitrobenzene sulfonic acid (TNBS) enema. The HF-FO diet improved the obese phenotype by reducing i) serum hormone concentrations (leptin and resistin), ii) adipose tissue mRNA expression of inflammatory cytokines (MCP-1, IFNγ, IL-6, IL17F and IL-21) and iii) total (F4/80+ CD11b+) and inflammatory adipose tissue M1 (F4/80+ CD11c+) macrophage content compared to HF (P<0.05). In addition, the HF-FO diet reduced both colitis-associated disease severity and colonic mRNA expression of the Th17 cell master transcription factor (RORγτ) and critical cytokines (IL-6, IL-17A, IL-17F, IL-21, IL-23 and IFNγ) versus HF (P<0.05). Compared to HF, the percentage of both splenic Th17 and Th1 cells were reduced by the HF-FO group (P<0.05). Under ex vivo polarizing conditions, the percentage of HF-FO derived CD4+ T cells that reached Th17 cell effector status was suppressed (P = 0.05). Collectively, these results indicate that n-3 PUFA suppress Th1/Th17 cells and inflammatory macrophage subsets and reconfigure the inflammatory gene expression profile in diverse tissue sites in obese mice following the induction of colitis.


Journal of Nutrition | 2012

Th17 Cell Accumulation Is Decreased during Chronic Experimental Colitis by (n-3) PUFA

Jennifer M. Monk; Qian Jia; Evelyn S. Callaway; Brad R. Weeks; Robert C. Alaniz; David N. McMurray; Robert S. Chapkin

During colon inflammation, Th17 cells and immunosuppressive regulatory T cells (Treg) are thought to play promotive and preventative roles, respectively. Dietary (n-3) PUFA favorably modulate intestinal inflammation in part by downregulating T-cell activation and functionality. We used the Fat-1 mouse, a genetic model that synthesizes long-chain (n-3) PUFA de novo, to test the hypothesis that (n-3) PUFA protect against colonic inflammation by modulating the polarization of Treg and Th17 cells during colitis. Male and female wild-type (WT) and Fat-1 mice were administered dextran sodium sulfate (DSS) in the drinking water (2.5%) to induce acute (5 d DSS) or chronic (3 cycles DSS) colitis and the percentage of Treg and Th17 cells residing locally [colonic lamina propria (cLP)] and systemically (spleen) was determined by flow cytometry. The percentage of Treg in either tissue site was unaffected by genotype (P > 0.05); however, during chronic colitis, the percentage of Th17 cells residing in both the spleen and cLP was lower in Fat-1 mice compared to WT mice (P < 0.05). Colonic mucosal mRNA expression of critical Th17 cell cytokines and chemokine receptors (IL-17F, IL-21, and CCR6) were lower, whereas expression of the Th17 cell suppressive cytokine, IL-27, was greater in Fat-1 mice compared to WT mice during chronic colitis (P < 0.05). Moreover, colon histological scores were improved in Fat-1 mice (P < 0.05). Collectively, these results demonstrate for the first time, to our knowledge, that (n-3) PUFA can modulate the colonic mucosal microenvironment to suppress Th17 cell accumulation and inflammatory damage following the induction of chronic colitis.


Journal of Lipid Research | 2012

Characterization of an arachidonic acid-deficient (Fads1 knockout) mouse model

Yang Yi Fan; Jennifer M. Monk; Tim Y. Hou; Evelyn Callway; Logan Vincent; Brad R. Weeks; Peiying Yang; Robert S. Chapkin

Arachidonic acid (20:4Δ5,8,11,14, AA)-derived eicosanoids regulate inflammation and promote cancer development. Previous studies have targeted prostaglandin enzymes in an attempt to modulate AA metabolism. However, due to safety concerns surrounding the use of pharmaceutical agents designed to target Ptgs2 (cyclooxygenase 2) and its downstream targets, it is important to identify new targets upstream of Ptgs2. Therefore, we determined the utility of antagonizing tissue AA levels as a novel approach to suppressing AA-derived eicosanoids. Systemic disruption of the Fads1 (Δ5 desaturase) gene reciprocally altered the levels of dihomo-γ-linolenic acid (20:3Δ8,11,14, DGLA) and AA in mouse tissues, resulting in a profound increase in 1-series-derived and a concurrent decrease in 2-series-derived prostaglandins. The lack of AA-derived eicosanoids, e.g., PGE2, was associated with perturbed intestinal crypt proliferation, immune cell homeostasis, and a heightened sensitivity to acute inflammatory challenge. In addition, null mice failed to thrive, dying off by 12 weeks of age. Dietary supplementation with AA extended the longevity of null mice to levels comparable to wild-type mice. We propose that this new mouse model will expand our understanding of how AA and its metabolites mediate inflammation and promote malignant transformation, with the eventual goal of identifying new drug targets upstream of Ptgs2.


British Journal of Nutrition | 2011

Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice

Qian Jia; Ivan Ivanov; Zlatomir Z. Zlatev; Robert C. Alaniz; Brad R. Weeks; Evelyn S. Callaway; Jennifer S. Goldsby; Laurie A. Davidson; Yang-Yi Fan; Lan Zhou; Joanne R. Lupton; David N. McMurray; Robert S. Chapkin

Both fish oil (FO) and curcumin have potential as anti-tumour and anti-inflammatory agents. To further explore their combined effects on dextran sodium sulphate (DSS)-induced colitis, C57BL/6 mice were randomised to four diets (2 × 2 design) differing in fatty acid content with or without curcumin supplementation (FO, FO+2 % curcumin, maize oil (control, MO) or MO+2 % curcumin). Mice were exposed to one or two cycles of DSS in the drinking-water to induce either acute or chronic intestinal inflammation, respectively. FO-fed mice exposed to the single-cycle DSS treatment exhibited the highest mortality (40 %, seventeen of forty-three) compared with MO with the lowest mortality (3 %, one of twenty-nine) (P = 0·0008). Addition of curcumin to MO increased (P = 0·003) mortality to 37 % compared with the control. Consistent with animal survival data, following the one- or two-cycle DSS treatment, both dietary FO and curcumin promoted mucosal injury/ulceration compared with MO. In contrast, compared with other diets, combined FO and curcumin feeding enhanced the resolution of chronic inflammation and suppressed (P < 0·05) a key inflammatory mediator, NF-κB, in the colon mucosa. Mucosal microarray analysis revealed that dietary FO, curcumin and FO plus curcumin combination differentially modulated the expression of genes induced by DSS treatment. These results suggest that dietary lipids and curcumin interact to regulate mucosal homeostasis and the resolution of chronic inflammation in the colon.


Journal of Veterinary Internal Medicine | 2000

Intestinal Crypt Lesions Associated with Protein‐Losing Enteropathy in the Dog

Michael D. Willard; G. Helman; J.M. Fradkin; T. Becker; R.M. Brown; B.C. Lewis; Brad R. Weeks

Six dogs were diagnosed with protein losing enteropathy (PLE). There was no evidence of inappropriate inflammatory infiltrates or lymphangiectasia in multiple mucosal biopsies of the small intestine of 4 of the dogs. The 5th and 6th dogs had obvious lymphangiectasia and a moderate infiltrate of inflammatory cells in the intestinal mucosa. All 6 dogs had a large number of dilated intestinal crypts that were filled with mucus, sloughed epithelial cells, and/or inflammatory cells. Whether PLE occurs in these dogs because of protein lost from the dilated crypts into the intestinal lumen or whether the dilated crypts are a mucosal reaction due to another undetermined lesion that is responsible for alimentary tract protein loss is unknown. However, when large numbers of dilated intestinal crypts are present, they appear to be associated with PLE even if there are no other remarkable lesions in the intestinal mucosa.

Collaboration


Dive into the Brad R. Weeks's collaboration.

Researchain Logo
Decentralizing Knowledge