Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy D. Turner is active.

Publication


Featured researches published by Nancy D. Turner.


Cancer Research | 2004

Chemopreventive n-3 Polyunsaturated Fatty Acids Reprogram Genetic Signatures during Colon Cancer Initiation and Progression in the Rat

Laurie A. Davidson; Danh V. Nguyen; Regina Hokanson; Evelyn S. Callaway; Robert B. Isett; Nancy D. Turner; Edward R. Dougherty; Naisyin Wang; Joanne R. Lupton; Raymond J. Carroll; Robert S. Chapkin

The mechanisms by which n-3 polyunsaturated fatty acids (PUFAs) decrease colon tumor formation have not been fully elucidated. Examination of genes up- or down-regulated at various stages of tumor development via the monitoring of gene expression relationships will help to determine the biological processes ultimately responsible for the protective effects of n-3 PUFA. Therefore, using a 3 × 2 × 2 factorial design, we used Codelink DNA microarrays containing ∼9000 genes to help decipher the global changes in colonocyte gene expression profiles in carcinogen-injected Sprague Dawley rats. Animals were assigned to three dietary treatments differing only in the type of fat (corn oil/n-6 PUFA, fish oil/n-3 PUFA, or olive oil/n-9 monounsaturated fatty acid), two treatments (injection with the carcinogen azoxymethane or with saline), and two time points (12 hours and 10 weeks after first injection). Only the consumption of n-3 PUFA exerted a protective effect at the initiation (DNA adduct formation) and promotional (aberrant crypt foci) stages. Importantly, microarray analysis of colonocyte gene expression profiles discerned fundamental differences among animals treated with n-3 PUFA at both the 12 hours and 10-week time points. Thus, in addition to demonstrating that dietary fat composition alters the molecular portrait of gene expression profiles in the colonic epithelium at both the initiation and promotional stages of tumor development, these findings indicate that the chemopreventive effect of fish oil is due to the direct action of n-3 PUFA and not to a reduction in the content of n-6 PUFA.


Experimental Biology and Medicine | 2010

Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats

Tety Leonardi; Jairam Vanamala; Stella S. Taddeo; Laurie A. Davidson; Mary E. Murphy; Bhimanagouda S. Patil; Naisyin Wang; Raymond J. Carroll; Robert S. Chapkin; Joanne R. Lupton; Nancy D. Turner

Epidemiological evidence suggests that a diet abundant in fruits and vegetables may protect against colon cancer. Bioactive compounds, including flavonoids and limonoids, have been shown to possess antiproliferative and antitumorigenic effects in various cancer models. This experiment investigated the effects of four citrus flavonoids and one limonoid mixture at the promotion stage of chemically induced colon cancer in rats. Male Sprague–Dawley rats (n = 10 rats/group) were randomly allocated to one of six diets formulated to contain 0.1% apigenin, 0.02% naringenin, 0.1% hesperidin, 0.01% nobiletin, 0.035% limonin glucoside/obacunone glucoside mixture or a control diet (0% flavonoid/limonoid). Rats received experimental diets for 10 weeks and were injected with azoxymethane (15 mg/kg) at weeks 3 and 4. Excised colons were evaluated for aberrant crypt foci (ACF) formation, colonocyte proliferation (proliferating cell nuclear antigen assay), apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling assay) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (immunoblotting). When compared with the control diet, apigenin lowered the number of high multiplicity ACF (HMACF >4 aberrant crypts/focus) by 57% (P < 0.05), while naringenin lowered both the number of HMACF by 51% (P < 0.05) and the proliferative index by 32% (P < 0.05). Both apigenin and naringenin increased apoptosis of luminal surface colonocytes (78% and 97%, respectively; P < 0.05) when compared with the control diet. Hesperidin, nobiletin and the limonin glucoside/obacunone glucoside mixture did not affect these variables. The colonic mucosal protein levels of iNOS or COX-2 were not different among the six diet groups. The ability of dietary apigenin and naringenin to reduce HMACF, lower proliferation (naringenin only) and increase apoptosis may contribute toward colon cancer prevention. However, these effects were not due to mitigation of iNOS and COX-2 protein levels at the ACF stage of colon cancer.


Lipids | 2002

Dietary n-3 PUFA alter colonocyte mitochondrial membrane composition and function

Robert S. Chapkin; Mee Young Hong; Yang-Yi Fan; Laurie A. Davidson; Lisa M. Sanders; Cara E. Henderson; Rola Barhoumi; Robert C. Burghardt; Nancy D. Turner; Joanne R. Lupton

There is experimental evidence that dietary fish oil, which contains the n−3 fatty acid family, i.e., EPA and DHA, protects against colon tumor development, in part by increasing apoptosis. Since mitochondria can act as central executioners of apoptosis, we hypothesized that EPA and DHA incorporation into colonocyte mitochondrial membranes, owing to their high degree of unsaturation, would enhance susceptibility to damage by reactive oxygen species (ROS) generated via oxidative phosphorylation. This, in turn, would compromise mitochondrial function, thereby initiating apoptosis. To test this hypothesis, colonic crypts were isolated from rats fed either fish oil, purified n−3 fatty acid ethyl esters, or corn oil (control). Dietary lipid source had no effect on colonic mitochondrial phospholipid class mole percentages, although incorporation of EPA and DHA was associated with a reduction in n−6 fatty acids known to enhance colon tumor development, i.e., linoleic acid (LNA) and its metabolic product, arachidonic acid (ARA). Select compositional changes in major phospholipid pools were correlated to alterations in mitochondrial function as assessed by confocal microscopy. The mol% sum of LNA plus ARA in cardiolipin was inversely correlated with ROS (P=0.024). Ethanolamine glycerophospholipid ARA (P=0.046) and choline glycerophospholipid INA (P=0.033) levels were positively correlated to mitochondrial membrane potential. In contrast, ethanolamine glycerophospholipid EPA (P=0.042) and DHA (P=0.024), levels were negatively correlated to mitochondrial membrane potential. Additionally, EPA and DHA levels in choline glycerophospholipids (P=0.026) were positively correlated with caspase 3 activity. These data provide evidence in vivo indicating that dietary FPA and DHA induce compositional changes in colonic mitochondrial membrane phospholipids that facilitate appotosis.


Nutrition | 2002

Opportunities for nutritional amelioration of radiation-induced cellular damage

Nancy D. Turner; L.A. Braby; John Ford; Joanne R. Lupton

The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.


Nutrition and Cancer | 2003

Fish Oil Enhances Targeted Apoptosis During Colon Tumor Initiation in Part by Downregulating Bcl-2

Mee Young Hong; Robert S. Chapkin; Laurie A. Davidson; Nancy D. Turner; Jeffrey S. Morris; Raymond J. Carroll; Joanne R. Lupton

We have shown that fish oil is protective against colon tumorigenesis, primarily by upregulating apoptosis. Production of prostaglandin E2 (PGE2) in colon cancer cells by cyclooxygenase (COX)-I and -II is known to inhibit apoptosis by induction of bcl-2. Because we have shown that fish oil downregulates PGE2 and COX-II, we hypothesized that this upregulation of apoptosis would be coincident with a downregulation of bcl-2. Bcl-2 was localized within the colonic crypt by quantitative immunohistochemistry (IHC), and scraped colonic mucosa was used for immunoblot analysis of bcl-2. The tissue used for bcl-2 analysis was from the rats used to determine apoptosis. Briefly, tissues were collected from rats consuming diets containing either corn oil or fish oil at 3, 6, 9, and 12 h after carcinogen injection. The correlation between bcl-2 and apoptosis was also determined. Bcl-2 expression decreased until 9 h (P < 0.05), whereas apoptosis increased until 9 h (P < 0.01). Bcl-2 expression and apoptosis were negatively correlated in both the proximal (P < 0.05) and distal colon (P < 0.005). Fish oil decreased bcl-2 expression (P < 0.05) and increased apoptosis (P < 0.05) in the top third of the crypt in the distal colon. In conclusion, one pathway by which fish oil may mediate apoptosis and thus protect against colon tumorigenesis is by downregulation of anti-apoptotic bcl-2.


Carcinogenesis | 2008

Upregulation of p21Waf1/Cip1 expression in vivo by butyrate administration can be chemoprotective or chemopromotive depending on the lipid component of the diet

Kristy Covert Crim; Lisa M. Sanders; Mee Young Hong; Stella S. Taddeo; Nancy D. Turner; Robert S. Chapkin; Joanne R. Lupton

The overall goal of this research was to separate out the effects of butyrate from its fiber source and determine in vivo if it upregulates colonic histone acetylation, p21(Waf1/Cip1) expression (p21) and apoptosis and if this sequela of events is protective against aberrant crypt foci (ACF) formation. Eighty Sprague-Dawley rats were provided defined diets with either corn oil or fish oil as the lipid source, +/- butyrate-containing capsules targeted for release in the colon and +/- azoxymethane (AOM) (10 rats per group). Diets were provided for 11 weeks and at termination colonocyte nuclear histone H4 and p21 expression were determined by immunohistochemistry, apoptosis was measured by the terminal deoxynucleotide transferase biotin-dUTP nick end labeling assay and aberrant crypt numbers and multiplicity were enumerated. Luminal butyrate levels were also quantified. AOM injection repressed p21 expression, which was reversed by butyrate supplementation. Although butyrate enhanced p21 expression with both dietary lipid sources, the increase in p21 resulted in an increase in apoptosis and decrease in ACF with fish oil, but had no effect on apoptosis and increased ACF with corn oil. This significant interaction between fat, butyrate (fiber) and p21 expression with one combination being protective and the other promotive of colon carcinogenesis reinforces the importance of considering diet as a key factor in chemoprevention.


Carcinogenesis | 2000

Morphodensitometric analysis of protein kinase C βII expression in rat colon: modulation by diet and relation to in situ cell proliferation and apoptosis

Laurie A. Davidson; Roxanne E. Brown; Wen Chi L Chang; Jeffrey S. Morris; Naisyin Wang; Raymond J. Carroll; Nancy D. Turner; Joanne R. Lupton; Robert S. Chapkin

We have recently demonstrated that overexpression of PKC beta(II) renders transgenic mice more susceptible to carcinogen-induced colonic hyperproliferation and aberrant crypt foci formation. In order to further investigate the ability of PKC beta(II) to modulate colonocyte cytokinetics, we determined the localization of PKC beta(II) with respect to cell proliferation and apoptosis along the entire colonic crypt axis following carcinogen and diet manipulation. Rats were provided diets containing either corn oil [containing n-6 polyunsaturated fatty acids (PUFA)] or fish oil (containing n-3 PUFA), cellulose (non-fermentable fiber) or pectin (fermentable fiber) and injected with azoxymethane (AOM) or saline. After 16 weeks, an intermediate time point when no macroscopic tumors are detected, colonic sections were utilized for immunohistochemical image analysis and immunoblotting. Cell proliferation was measured by incorporation of bromodeoxyuridine into DNA and apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling. In the distal colon, PKC beta(II) staining was localized to the upper portion of the crypt. In comparison, proximal crypts had more (P < 0.05) staining in the lower tertile. AOM enhanced (P < 0.05) PKC beta(II) expression in all regions of the distal colonic crypt (upper, middle and lower tertiles). There was also an interaction (P < 0.05) between dietary fat and fiber on PKC beta(II) expression (corn/pectin > fish/cellulose, fish/pectin > corn/cellulose) in all regions of the distal colonic crypt. With respect to colonic cell kinetics, proliferation paralleled the increase in PKC beta(II) expression in carcinogen-treated animals. In contrast, apoptosis at the lumenal surface was inversely proportional to PKC beta(II) expression in the upper tertile. These results suggest that an elevation in PKC beta(II) expression along the crypt axis in the distal colon is linked to enhancement of cell proliferation and suppression of apoptosis, predictive intermediate biomarkers of tumor development. Therefore, select dietary factors may confer protection against colon carcinogenesis in part by blocking carcinogen-induced PKC beta(II) expression.


Journal of Nutrition | 2009

Quercetin May Suppress Rat Aberrant Crypt Foci Formation by Suppressing Inflammatory Mediators That Influence Proliferation and Apoptosis

Cynthia A. Warren; Kimberly Paulhill; Laurie A. Davidson; Joanne R. Lupton; Stella S. Taddeo; Mee Young Hong; Raymond J. Carroll; Robert S. Chapkin; Nancy D. Turner

The flavonoid quercetin suppresses cell proliferation and enhances apoptosis in vitro. In this study, we determined whether quercetin protects against colon cancer by regulating the protein level of phosphatidylinositol 3-kinase (PI 3-kinase) and Akt or by suppressing the expression of proinflammatory mediators [cyclooxygenase (COX)-1, COX-2, inducible nitric oxide synthase (iNOS)] during the aberrant crypt (AC) stage. Forty male rats were randomly assigned to receive diets containing quercetin (0 or 4.5 g/kg) and injected subcutaneously with saline or azoxymethane (AOM; 2 times during wk 3 and 4). The colon was resected 4 wk after the last AOM injection and samples were used to determine high multiplicity AC foci (HMACF; foci with >4 AC) number, colonocyte proliferation and apoptosis by immunohistochemistry, expression of PI 3-kinase (p85 and p85alpha subunits) and Akt by immunoblotting, and COX-1, COX-2, and iNOS expression by real time RT-PCR. Quercetin-fed rats had fewer (P = 0.033) HMACF. Relative to the control diet, quercetin lowered the proliferative index (P = 0.035) regardless of treatment and diminished the AOM-induced elevation in crypt column cell number (P = 0.044) and expansion of the proliferative zone (P = 0.021). The proportion of apoptotic colonocytes in AOM-injected rats increased with quercetin treatment (P = 0.014). Levels of p85 and p85alpha subunits of PI 3-kinase and total Akt were unaffected by dietary quercetin. However, quercetin tended to suppress (P < 0.06) the expression of COX-1 and COX-2. Expression of iNOS was elevated by AOM injection (P = 0.0001). In conclusion, quercetin suppresses the formation of early preneoplastic lesions in colon carcinogenesis, which occurred in concert with reductions in proliferation and increases in apoptosis. It is possible the effects on proliferation and apoptosis resulted from the tendency for quercetin to suppress the expression of proinflammatory mediators.


Nutrition and Cancer | 2005

Fish oil decreases oxidative DNA damage by enhancing apoptosis in rat colon

Mee Young Hong; Laura K. Bancroft; Nancy D. Turner; Laurie A. Davidson; Mary E. Murphy; Raymond J. Carroll; Robert S. Chapkin; Joanne R. Lupton

Abstract: To determine if dietary fish oil protects against colon cancer by decreasing oxidative DNA damage at the initiation stage of colon tumorigenesis, oxidative DNA damage, proliferation, and apoptosis were assessed by colonic crypt cell position using quantitative immunohistochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG), Ki-67, and TUNEL assay, respectively. Sixty rats were provided one of two diets (corn oil or fish oil) and dextran sodium sulfate (DSS, an inducer of oxidative DNA damage) treatments (no DSS, 3% DSS, or DSS withdrawal). Fish oil feeding resulted in lower 8-OHdG levels (P = 0.038), higher levels of apoptosis (P = 0.035), and a lower cell proliferative index (P = 0.05) compared with corn oil feeding. In the top third of the crypt, fish oil caused an incremental stimulation of apoptosis with increased DNA damage (P = 0.043), whereas there was no such relationship with corn oil. Because polyps and tumors develop from DNA damage that leads to loss of growth and death control, the significant difference in fish oil vs. corn oil on these variables may account, in part, for the observed protective effect of fish oil against oxidatively induced colon cancer.


Experimental Biology and Medicine | 2014

Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation

Youngmi Cho; Nancy D. Turner; Laurie A. Davidson; Robert S. Chapkin; Raymond J. Carroll; Joanne R. Lupton

DNA methylation and histone acetylation contribute to the transcriptional regulation of genes involved in apoptosis. We have demonstrated that docosahexaenoic acid (DHA, 22:6 n-3) and butyrate enhance colonocyte apoptosis. To determine if DHA and/or butyrate elevate apoptosis through epigenetic mechanisms thereby restoring the transcription of apoptosis-related genes, we examined global methylation; gene-specific promoter methylation of 24 apoptosis-related genes; transcription levels of Cideb, Dapk1, and Tnfrsf25; and global histone acetylation in the HCT-116 colon cancer cell line. Cells were treated with combinations of (50 µM) DHA or linoleic acid (18:2 n-6), (5 mM) butyrate or an inhibitor of DNA methyltransferases, and 5-aza-2′-deoxycytidine (5-Aza-dC, 2 µM). Among highly methylated genes, the combination of DHA and butyrate significantly reduced methylation of the proapoptotic Bcl2l11, Cideb, Dapk1, Ltbr, and Tnfrsf25 genes compared to untreated control cells. DHA treatment reduced the methylation of Cideb, Dapk1, and Tnfrsf25. These data suggest that the induction of apoptosis by DHA and butyrate is mediated, in part, through changes in the methylation state of apoptosis-related genes.

Collaboration


Dive into the Nancy D. Turner's collaboration.

Top Co-Authors

Avatar

Jairam Vanamala

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Morris

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge