Bradford K. Berges
Brigham Young University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bradford K. Berges.
Retrovirology | 2006
Bradford K. Berges; William H. Wheat; Brent E. Palmer; Elizabeth Connick; Ramesh Akkina
BackgroundThe currently well-established humanized mouse models, namely the hu-PBL-SCID and SCID-hu systems played an important role in HIV pathogenesis studies. However, despite many notable successes, several limitations still exist. They lack multi-lineage human hematopoiesis and a functional human immune system. These models primarily reflect an acute HIV infection with rapid CD4 T cell loss thus limiting pathogenesis studies to a short-term period. The new humanized Rag2-/-γc-/- mouse model (RAG-hu) created by intrahepatic injection of CD34 hematopoietic stem cells sustains long-term multi-lineage human hematopoiesis and is capable of mounting immune responses. Thus, this model shows considerable promise to study long-term in vivo HIV infection and pathogenesis.ResultsHere we demonstrate that RAG-hu mice produce human cell types permissive to HIV-1 infection and that they can be productively infected by HIV-1 ex vivo. To assess the capacity of these mice to sustain long-term infection in vivo, they were infected by either X4-tropic or R5-tropic HIV-1. Viral infection was assessed by PCR, co-culture, and in situ hybridization. Our results show that both X4 and R5 viruses are capable of infecting RAG-hu mice and that viremia lasts for at least 30 weeks. Moreover, HIV-1 infection leads to CD4 T cell depletion in peripheral blood and thymus, thus mimicking key aspects of HIV-1 pathogenesis. Additionally, a chimeric HIV-1 NL4-3 virus expressing a GFP reporter, although capable of causing viremia, failed to show CD4 T cell depletion possibly due to attenuation.ConclusionThe humanized RAG-hu mouse model, characterized by its capacity for sustained multi-lineage human hematopoiesis and immune response, can support productive HIV-1 infection. Both T cell and macrophage tropic HIV-1 strains can cause persistent infection of RAG-hu mice resulting in CD4 T cell loss. Prolonged viremia in the context of CD4 T cell depletion seen in this model mirrors the main features of HIV infection in the human. Thus, the RAG-hu mouse model of HIV-1 infection shows great promise for future in vivo pathogenesis studies, evaluation of new drug treatments, vaccines and novel gene therapy strategies.
Virology | 2008
Bradford K. Berges; Sarah R. Akkina; Joy M. Folkvord; Elizabeth Connick; Ramesh Akkina
Studies on HIV-1 mucosal transmission to evaluate early events in pathogenesis and the development of effective preventive/prophylactic methods have thus far been hampered by the lack of a suitable animal model susceptible to HIV-1 infection by either vaginal and/or rectal routes. In this regard, while primate-SIV/SHIV and cat-FIV models provided useful surrogate platforms to derive comparative data, these viruses are distinct and different from that of HIV-1. Therefore an optimal model that permits direct study of HIV-1 transmission via mucosal routes is highly desirable. The new generation of humanized NOD/SCID BLT, NOD/SCIDgammac(-/-), and Rag2(-/-)gammac(-/-) mouse models show great promise to achieve this goal. Here, we show that humanized Rag2(-/-)gammac(-/-) mice (RAG-hu) engrafted with CD34 hematopoietic progenitor cells harbor HIV-1-susceptible human cells in the rectal and vaginal mucosa and are susceptible to HIV-1 infection when exposed to cell-free HIV-1 either via vagina or rectum. Infection could be established without any prior hormonal conditioning or mucosal abrasion. Both R5 and X4 tropic viruses were capable of mucosal infection resulting in viremia and associated helper T cell depletion. There was systemic spread of the virus with infected cells detected in different organs including the intestinal mucosa. R5 virus was highly efficient in mucosal transmission by both routes whereas X4 virus was relatively less efficient in causing infection. HIV-1 infection of RAG-hu mice by vaginal and rectal routes as shown here represents the first in vivo model of HIV-1 transmission across intact mucosal barriers and as such may prove very useful for studying early events in HIV-1 pathogenesis in vivo, as well as the testing of microbicides, anti-HIV vaccines/therapeutics, and other novel strategies to prevent HIV-1 transmission.
Retrovirology | 2011
Bradford K. Berges; Mark R Rowan
Substantial improvements have been made in recent years in the ability to engraft human cells and tissues into immunodeficient mice. The use of human hematopoietic stem cells (HSCs) leads to multi-lineage human hematopoiesis accompanied by production of a variety of human immune cell types. Population of murine primary and secondary lymphoid organs with human cells occurs, and long-term engraftment has been achieved. Engrafted cells are capable of producing human innate and adaptive immune responses, making these models the most physiologically relevant humanized animal models to date. New models have been successfully infected by a variety of strains of Human Immunodeficiency Virus Type 1 (HIV-1), accompanied by virus replication in lymphoid and non-lymphoid organs, including the gut-associated lymphoid tissue, the male and female reproductive tracts, and the brain. Multiple forms of virus-induced pathogenesis are present, and human T cell and antibody responses to HIV-1 are detected. These humanized mice are susceptible to a high rate of rectal and vaginal transmission of HIV-1 across an intact epithelium, indicating the potential to study vaccines and microbicides. Antiviral drugs, siRNAs, and hematopoietic stem cell gene therapy strategies have all been shown to be effective at reducing viral load and preventing or reversing helper T cell loss in humanized mice, indicating that they will serve as an important preclinical model to study new therapeutic modalities. HIV-1 has also been shown to evolve in response to selective pressures in humanized mice, thus showing that the model will be useful to study and/or predict viral evolution in response to drug or immune pressures. The purpose of this review is to summarize the findings reported to date on all new humanized mouse models (those transplanted with human HSCs) in regards to HIV-1 sexual transmission, pathogenesis, anti-HIV-1 immune responses, viral evolution, pre- and post-exposure prophylaxis, and gene therapeutic strategies.
Virology | 2010
Bradford K. Berges; Sarah R. Akkina; Leila Remling; Ramesh Akkina
HIV-1 infection is characterized by life-long viral persistence and continued decline of helper CD4 T cells. The new generation of humanized mouse models that encompass RAG-hu, hNOG and BLT mice have been shown to be susceptible to HIV-1 infection and display CD4 T cell loss. Productive infection has been demonstrated with both R5 and X4 tropic strains of HIV-1 via direct injection as well as mucosal exposure. However the duration of infection in these mice was evaluated for a limited time lasting only weeks post infection, and it is not established how long the viremia can be sustained, and if the CD4 T cell loss persists throughout the life of the infected humanized mice. In the present study we followed the HIV-1 infected RAG-hu mice to determine the long-term viral persistence and CD4 T cell levels. Our results showed that viremia persists life-long lasting for more than a year, and that CD4 T cell levels display a continuous declining trend as seen in the human. These studies provide a chronic HIV-1 infection humanized mouse model that can be used to dissect viral latency, long-term drug evaluation and immune-based therapies.
PLOS ONE | 2011
Ramesh Akkina; Bradford K. Berges; Brent E. Palmer; Leila Remling; C. Preston Neff; Jes Kuruvilla; Elizabeth Connick; Joy M. Folkvord; Kathy Gagliardi; Afework Kassu; Sarah R. Akkina
Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting.
Stem Cells and Development | 2014
Anne Tanner; Stephen E. Taylor; Wittnee Decottignies; Bradford K. Berges
Hematopoietic stem cell (HSC) transplantation has the potential to treat a variety of human diseases, including genetic deficiencies, immune disorders, and to restore immunity following cancer treatment. However, there are several obstacles that prevent effective HSC transplantation in humans. These include finding a matched donor, having a sufficient number of cells for the transplant, and the potency of the cells in the transplant. Ethical issues prevent effective research in humans that could provide insight into ways to overcome these obstacles. Highly immunodeficient mice can be transplanted with human HSCs and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. As such, humanized mice serve as a model for human HSC transplantation. A variety of conditions have been analyzed for their impact on HSC transplantation to produce humanized mice, including the type and source of cells used in the transplant, the number of cells transplanted, the expansion of cells with various protocols, and the route of introduction of cells into the mouse. In this review, we summarize what has been learned about HSC transplantation using humanized mice as a recipient model and we comment on how these models may be useful to future preclinical research to determine more effective ways to expand HSCs and to determine their repopulating potential in vivo.
Journal of Virology | 2013
Anne Tanner; Stephanie A. Carlson; Masatoshi Nukui; Eain A. Murphy; Bradford K. Berges
ABSTRACT Although serious human diseases have been correlated with human herpesvirus 6A (HHV-6A) and HHV-6B, the lack of animal models has prevented studies which would more definitively link these viral infections to disease. HHV-6A and HHV-6B have recently been classified as two distinct viruses, and in this study we focused specifically on developing an in vivo model for HHV-6A. Here we show that Rag2−/−γc−/− mice humanized with cord blood-derived human hematopoietic stem cells produce human T cells that express the major HHV-6A receptor, CD46. Both cell-associated and cell-free viral transmission of HHV-6A into the peritoneal cavity resulted in detectable viral DNA in at least one of the samples (blood, bone marrow, etc.) analyzed from nearly all engrafted mice. Organs and cells positive for HHV-6A DNA were the plasma and cellular blood fractions, bone marrow, lymph node, and thymic samples; control mice had undetectable viral DNA. We also noted viral pathogenic effects on certain T cell populations. Specific thymocyte populations, including CD3− CD4+ CD8− and CD3+ CD4− cells, were significantly modified in humanized mice infected by cell-associated transmission. In addition, we detected significantly increased proportions of CD4+ CD8+ cells in the blood of animals infected by cell-free transmission. These findings provide additional evidence that HHV-6A may play a role in human immunodeficiencies. These results indicate that humanized mice can be used to study HHV-6A in vivo infection and replication as well as aspects of viral pathogenesis.
PLOS ONE | 2015
Kyle C. Jensen; Bryan B Hair; Trevor M. Wienclaw; Mark H. Murdock; Jacob B. Hatch; Aaron T. Trent; Tyler D. White; Kyler J. Haskell; Bradford K. Berges
Staphylococcus aureus (SA) is a commensal bacterium and opportunistic pathogen commonly associated with humans and is capable of causing serious disease and death including sepsis, pneumonia, and meningitis. Methicillin-resistant SA (MRSA) isolates are typically resistant to many available antibiotics with the common exception of vancomycin. The presence of vancomycin resistance in some SA isolates combined with the current heavy use of vancomycin to treat MRSA infections indicates that MRSA may achieve broad resistance to vancomycin in the near future. New MRSA treatments are clearly needed. Bacteriophages (phages) are viruses that infect bacteria, commonly resulting in death of the host bacterial cell. Phage therapy entails the use of phage to treat or prevent bacterial infections. In this study, 12 phages were isolated that can replicate in human SA and/or MRSA isolates as a potential way to control these infections. 5 phage were discovered through mitomycin C induction of prophage and 7 others as extracellular viruses. Primary SA strains were also isolated from environmental sources to be used as tools for phage discovery and isolation as well as to examine the target cell host range of the phage isolates by spot testing. Primary isolates were tested for susceptibility to oxacillin in order to determine which were MRSA. Experiments were performed to assess the host range and killing potential of newly discovered phage, and significant reductions in bacterial load were detected. We explored the utility of some phage to decontaminate fomites (glass and cloth) and found a significant reduction in colony forming units of MRSA following phage treatment, including tests of a phage cocktail against a cocktail of MRSA isolates. Our findings suggest that phage treatment can be used as an effective tool to decontaminate human MRSA from both hard surfaces and fabrics.
Current Opinion in Virology | 2014
Branka Horvat; Bradford K. Berges; Paolo Lusso
Progress in the identification of suitable animal models for human herpesvirus (HHV)-6A and HHV-6B infections has been slow. Recently, new models have been established, mainly for HHV-6A, which reproduce some pathological features seen in humans. Neuroinflammatory signs were observed in infected marmosets and CD46-transgenic mice; although viral replication was not prominent, persistence of viral DNA and specific immunologic responses were detected, suggesting an immune-mediated pathogenic mechanism. Pig-tailed macaques showed robust viral replication concomitant with acute-phase symptoms, and provided a model to study the effects of HHV-6A on AIDS progression. In humanized mice, viral replication was less evident, but infection led to T-cell alterations. Altogether, these recent developments have opened new perspectives for studying the pathogenic role of HHV-6A in humans.
Journal of General Virology | 2014
Bradford K. Berges; Anne Tanner
The human herpesviruses (HHVs) are remarkably successful human pathogens, with some members of the family successfully establishing infection in the vast majority of humans worldwide. Although many HHV infections result in asymptomatic infection or mild disease, there are rare cases of severe disease and death found with nearly every HHV. Many of the pathogenic mechanisms of these viruses are poorly understood, and in many cases, effective antiviral drugs are lacking. Only a single vaccine exists for the HHVs and researchers have been unable to develop treatments to cure the persistent infections associated with HHVs. A major hindrance to HHV research has been the lack of suitable animal models, with the notable exception of the herpes simplex viruses. One promising area for HHV research is the use of humanized mouse models, in which human cells or tissues are transplanted into immunodeficient mice. Current humanized mouse models mostly transplant human haematopoietic stem cells (HSCs), resulting in the production of a variety of human immune cells. Although all HHVs are thought to infect human immune cells, the beta- and gammaherpesviruses extensively infect and establish latency in these cells. Thus, mice humanized with HSCs hold great promise to study these herpesviruses. In this review, we provide a historical perspective on the use of both older and newer humanized mouse models to study HHV infections. The focus is on current developments in using humanized mice to study mechanisms of HHV-induced pathogenesis, human immune responses to HHVs and effectiveness of antiviral drugs.