Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramesh Akkina is active.

Publication


Featured researches published by Ramesh Akkina.


Nucleic Acids Research | 2009

Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells

Jiehua Zhou; Piotr Swiderski; Haitang Li; Jane Zhang; C. Preston Neff; Ramesh Akkina; John J. Rossi

The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2′-F substituted RNA aptamers that bind to the HIV-1BaL gp120 protein with nanomole affinity were isolated from a RNA library by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure. From two of these aptamers we created a series of new dual inhibitory function anti-gp120 aptamer–siRNA chimeras. The aptamers and aptamer–siRNA chimeras specifically bind to and are internalized into cells expressing HIV gp160. The Dicer-substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells (PBMCs). Moreover, we have introduced a ‘sticky’ sequence onto a chemically synthesized aptamer which facilitates attachment of the Dicer substrate siRNAs for potential multiplexing. Our results provide a set of novel inhibitory agents for blocking HIV replication and further validate the use of aptamers for delivery of Dicer substrate siRNAs.


Science Translational Medicine | 2011

An Aptamer-siRNA Chimera Suppresses HIV-1 Viral Loads and Protects from Helper CD4+ T Cell Decline in Humanized Mice

Charles Preston Neff; Jiehua Zhou; Leila Remling; Jes Kuruvilla; Jane Zhang; Haitang Li; David D. Smith; Piotr Swiderski; John J. Rossi; Ramesh Akkina

A dual-function aptamer that targets both a HIV-1 surface protein and a critical messenger RNA can inhibit HIV infection in humanized mice. A Small but Deadly Therapy for HIV Simultaneously precise and fragile, small interfering RNAs (siRNAs) have not as yet shown much success as therapeutic agents, despite their high specificity for selected targets. When injected into an organism, siRNAs tend to be destroyed in the blood, sometimes provoking the body’s own innate immune defenses against this foreign object. But there are ways around these problems, and Neff et al. have developed one by harnessing an RNA aptamer in the pursuit of a successful approach to vanquishing the HIV. Their aptamer, artificially evolved to bind tightly to the gp120 molecule on the surface of HIV, interrupts cell infection by the virus by itself. But by attaching an inhibitory siRNA directed against the essential tat/rev gene to one end of the aptamer, the authors enhanced its deadliness. HIV-infected mice treated with this chimeric agent showed reduced viral loads and improved CD4+ T cell status, indicating that such an approach may be beneficial to HIV-infected patients. Mice do not generally become infected with HIV, and so they have not been as informative as nonhuman primates in the fight against AIDS. But the authors Neff et al. got around this problem using an improved version of the BALB/c mouse, in which the animals have been engrafted with human hematopoietic stem cells and so carry a human instead of a mouse immune system. When infected with HIV, these animals showed viremia and CD4+ T cell loss, mimicking key aspects of AIDS. Treatment with the chimeric aptamer-siRNA against gp120 and tat/rev decreased HIV concentrations in the blood, with many mice showing a sharp drop, and restored the CD4+ T cell level—a measure of immune function that decreases in HIV-infected patients. siRNA was detected in the immune cells of the mice, showing that the chimera delivered its cargo to the intended target, and the amounts of tat-rev RNA were markedly reduced in these same cells, showing that the siRNA was doing its job to thwart viral gene expression. The dual-function aptamer avoided another problem often found with therapeutic RNAs: No interferon responses were generated, indicating that the chimera was not causing an immune reaction. These results are good news for two reasons: They show that the inhibition of two key molecules crucial for the HIV life cycle can in turn inhibit viral spread, pointing to an alternative therapy for this still burdensome infection. They also lay out a general approach for delivering siRNAs to particular target cells, shown here to be useful for HIV but potentially applicable to other diseases that require exact delivery of a deadly agent to a tiny target. Therapeutic strategies designed to treat HIV infection with combinations of antiviral drugs have proven to be the best approach for slowing the progression to AIDS. Despite this progress, there are problems with viral drug resistance and toxicity, necessitating new approaches to combating HIV-1 infection. We have therefore developed a different combination approach for the treatment of HIV infection in which an RNA aptamer, with high binding affinity to the HIV-1 envelope (gp120) protein and virus neutralization properties, is attached to and delivers a small interfering RNA (siRNA) that triggers sequence-specific degradation of HIV RNAs. We have tested the antiviral activities of these chimeric RNAs in a humanized Rag2−/−γc−/− (RAG-hu) mouse model with multilineage human hematopoiesis. In this animal model, HIV-1 replication and CD4+ T cell depletion mimic the situation seen in human HIV-infected patients. Our results show that treatment with either the anti-gp120 aptamer or the aptamer-siRNA chimera suppressed HIV-1 replication by several orders of magnitude and prevented the viral-induced helper CD4+ T cell decline. In comparison to the aptamer alone, the aptamer-siRNA combination provided more extensive inhibition, resulting in a significantly longer antiviral effect that extended several weeks beyond the last injected dose. The aptamer thus acts as a broad-spectrum HIV-neutralizing agent and an siRNA delivery vehicle. The combined aptamer-siRNA agent provides an attractive, nontoxic therapeutic approach for treatment of HIV infection.


Molecular Therapy | 2003

Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages

Akhil Banerjea; Ming-Jie Li; Gerhard Bauer; Leila Remling; Nan Sook Lee; John J. Rossi; Ramesh Akkina

The phenomenon of RNA interference mediated by small interfering RNAs (siRNAs) is a potent gene-silencing mechanism. A number of recent studies demonstrated inhibition of HIV-1 replication in cultured cells using this approach. To make further progress and harness this technology for HIV-1 gene therapy in a stem cell setting, in vivo studies using primary hematopoietic cells are needed. Using an HIV-based lentiviral vector we introduced an anti-Rev siRNA construct into CD34(+) hematopoietic progenitor cells. The siRNA-transduced progenitor cells were allowed to mature into macrophages in vitro and T cells in vivo in SCID-hu mouse thy/liv grafts. Phenotypically normal T cells and macrophages displaying characteristic surface markers were obtained. In vitro HIV-1 challenge of the siRNA-expressing macrophages and T cells with macrophage-tropic and T-cell-tropic HIV-1, respectively, showed marked viral resistance. These experiments demonstrate the utility of siRNAs delivered into hematopoietic stem cells via lentiviral vectors for future in vivo applications.


Retrovirology | 2006

HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-γc-/- (RAG-hu) mouse model

Bradford K. Berges; William H. Wheat; Brent E. Palmer; Elizabeth Connick; Ramesh Akkina

BackgroundThe currently well-established humanized mouse models, namely the hu-PBL-SCID and SCID-hu systems played an important role in HIV pathogenesis studies. However, despite many notable successes, several limitations still exist. They lack multi-lineage human hematopoiesis and a functional human immune system. These models primarily reflect an acute HIV infection with rapid CD4 T cell loss thus limiting pathogenesis studies to a short-term period. The new humanized Rag2-/-γc-/- mouse model (RAG-hu) created by intrahepatic injection of CD34 hematopoietic stem cells sustains long-term multi-lineage human hematopoiesis and is capable of mounting immune responses. Thus, this model shows considerable promise to study long-term in vivo HIV infection and pathogenesis.ResultsHere we demonstrate that RAG-hu mice produce human cell types permissive to HIV-1 infection and that they can be productively infected by HIV-1 ex vivo. To assess the capacity of these mice to sustain long-term infection in vivo, they were infected by either X4-tropic or R5-tropic HIV-1. Viral infection was assessed by PCR, co-culture, and in situ hybridization. Our results show that both X4 and R5 viruses are capable of infecting RAG-hu mice and that viremia lasts for at least 30 weeks. Moreover, HIV-1 infection leads to CD4 T cell depletion in peripheral blood and thymus, thus mimicking key aspects of HIV-1 pathogenesis. Additionally, a chimeric HIV-1 NL4-3 virus expressing a GFP reporter, although capable of causing viremia, failed to show CD4 T cell depletion possibly due to attenuation.ConclusionThe humanized RAG-hu mouse model, characterized by its capacity for sustained multi-lineage human hematopoiesis and immune response, can support productive HIV-1 infection. Both T cell and macrophage tropic HIV-1 strains can cause persistent infection of RAG-hu mice resulting in CD4 T cell loss. Prolonged viremia in the context of CD4 T cell depletion seen in this model mirrors the main features of HIV infection in the human. Thus, the RAG-hu mouse model of HIV-1 infection shows great promise for future in vivo pathogenesis studies, evaluation of new drug treatments, vaccines and novel gene therapy strategies.


Journal of Virology | 2013

Identification of Novel Influenza A Virus Proteins Translated from PA mRNA

Yukiko Muramoto; Takeshi Noda; Eiryo Kawakami; Ramesh Akkina; Yoshihiro Kawaoka

ABSTRACT Many replication events are involved in the influenza A virus life cycle, and they are accomplished by different virus proteins with specific functions. However, because the size of the influenza virus genome is limited, the virus uses different mechanisms to express multiple viral proteins from a single gene segment. The M2 and NS2 proteins are produced by splicing, and several novel influenza A virus proteins, such as PB1-F2, PB1-N40, and PA-X, have recently been identified. Here, we identified novel PA-related proteins in influenza A virus-infected cells. These newly identified proteins are translated from the 11th and 13th in-frame AUG codons in the PA mRNA and are, therefore, N-terminally truncated forms of PA, which we named PA-N155 and PA-N182, respectively. The 11th and 13th AUG codons are highly conserved among influenza A viruses, and the PA-N155 and PA-N182 proteins were detected in cells infected with various influenza A viruses isolated from different host species, suggesting the expression of these N-truncated PAs is universal in nature among influenza A viruses. These N-truncated PAs did not show polymerase activity when expressed together with PB1 and PB2; however, mutant viruses lacking the N-truncated PAs replicated more slowly in cell culture and had lower pathogenicity in mice than did wild-type virus. These results suggest that these novel PA-related proteins likely possess important functions in the replication cycle of influenza A virus.


Oligonucleotides | 2003

Bispecific Short Hairpin siRNA Constructs Targeted to CD4, CXCR4, and CCR5 Confer HIV-1 Resistance

Joseph S. Anderson; Akhil Banerjea; Ramesh Akkina

Exploiting the phenomenon of RNA interference (RNAi), recent studies established the utility of monospecific small interfering RNAs (siRNAs) in suppressing HIV-1 infection. However, because of the high mutation rate of the HIV genome, there are considerable challenges in the design of fully efficacious gene therapeutic constructs. Therefore, approaches that simultaneously target different stages of the viral life cycle are desirable. In our current studies, we designed bispecific siRNA constructs against HIV-1 cell surface receptors to inhibit viral entry. Dual specific short hairpin siRNA constructs, containing an 8-nucleotide intervening spacer, targeted against either CXCR4 and CD4 or CCR5 and CXCR4 were synthesized by in vitro transcription. Cleavage of the bispecific constructs yielding monospecific siRNAs was shown to occur in cell extracts. Magi-CXCR4 and CCR5 cells transfected with bispecific siRNAs showed significant downregulation of their respective coreceptors, as determined by FACS analysis. This suggested that combinatorial constructs comprising multiple effector motifs were processed in transfected cells into their respective functional siRNAs. Transfected cells were challenged with either X4 (NL4-3) or R5-tropic (BaL-1) strains of HIV-1. Downregulation of the cell surface receptors coincided with resistance to in vitro viral challenge in both Magi cell lines and peripheral blood mononuclear cells (PBMCs). These results demonstrated the practical utility of short hairpin siRNA bispecific constructs synthesized as a single transcript. Because the short hairpin design will permit tandem assembly of multiple effector motifs, it is now possible to introduce promising multivalent siRNA constructs into retroviral and lentiviral vectors for in vivo gene therapeutic applications.


Virology | 2013

New generation humanized mice for virus research: Comparative aspects and future prospects

Ramesh Akkina

Work with human specific viruses will greatly benefit from the use of an in vivo system that provides human target cells and tissues in a physiological setting. In this regard humanized mice (hu-Mice) have played an important role in our understanding of viral pathogenesis and testing of therapeutic strategies. Limitations with earlier versions of hu-Mice that lacked a functioning human immune system are currently being overcome. The new generation hu-Mouse models are capable of multilineage human hematopoiesis and generate T cells, B cells, macrophages and dendritic cells required for an adaptive human immune response. Now any human specific pathogen that can infect humanized mice can be studied in the context of ongoing infection and immune responses. Two leading humanized mouse models are currently employed: the hu-HSC model is created by transplantation of human hematopoietic stem cells (HSC), whereas the BLT mouse model is prepared by transplantation of human fetal liver, thymus and HSC. A number of human specific viruses such as HIV-1, dengue, EBV and HCV are being studied intensively in these systems. Both models permit infection by mucosal routes with viruses such as HIV-1 thus allowing transmission prevention studies. Cellular and humoral immune responses are seen in both the models. While there is efficient antigen specific IgM production, IgG responses are suboptimal due to inefficient immunoglobulin class switching. With the maturation of T cells occurring in the autologous human thymus, BLT mice permit human HLA restricted T cell responses in contrast to hu-HSC mice. However, the strength of the immune responses needs further improvement in both models to reach the levels seen in humans. The scope of hu-Mice use is further broadened by transplantation of additional tissues like human liver thus permitting immunopathogenesis studies on hepatotropic viruses such as HCV. Numerous studies that encompass antivirals, gene therapy, viral evolution, and the generation of human monoclonal antibodies have been conducted with promising results in these mice. For further improvement of the new hu-Mouse models, ongoing work is focused on generating new strains of immunodeficient mice transgenic for human HLA molecules to strengthen immune responses and human cytokines and growth factors to improve human cell reconstitution and their homeostatic maintenance.


Virology | 2008

Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2−/−γc−/− (RAG-hu) mice

Bradford K. Berges; Sarah R. Akkina; Joy M. Folkvord; Elizabeth Connick; Ramesh Akkina

Studies on HIV-1 mucosal transmission to evaluate early events in pathogenesis and the development of effective preventive/prophylactic methods have thus far been hampered by the lack of a suitable animal model susceptible to HIV-1 infection by either vaginal and/or rectal routes. In this regard, while primate-SIV/SHIV and cat-FIV models provided useful surrogate platforms to derive comparative data, these viruses are distinct and different from that of HIV-1. Therefore an optimal model that permits direct study of HIV-1 transmission via mucosal routes is highly desirable. The new generation of humanized NOD/SCID BLT, NOD/SCIDgammac(-/-), and Rag2(-/-)gammac(-/-) mouse models show great promise to achieve this goal. Here, we show that humanized Rag2(-/-)gammac(-/-) mice (RAG-hu) engrafted with CD34 hematopoietic progenitor cells harbor HIV-1-susceptible human cells in the rectal and vaginal mucosa and are susceptible to HIV-1 infection when exposed to cell-free HIV-1 either via vagina or rectum. Infection could be established without any prior hormonal conditioning or mucosal abrasion. Both R5 and X4 tropic viruses were capable of mucosal infection resulting in viremia and associated helper T cell depletion. There was systemic spread of the virus with infected cells detected in different organs including the intestinal mucosa. R5 virus was highly efficient in mucosal transmission by both routes whereas X4 virus was relatively less efficient in causing infection. HIV-1 infection of RAG-hu mice by vaginal and rectal routes as shown here represents the first in vivo model of HIV-1 transmission across intact mucosal barriers and as such may prove very useful for studying early events in HIV-1 pathogenesis in vivo, as well as the testing of microbicides, anti-HIV vaccines/therapeutics, and other novel strategies to prevent HIV-1 transmission.


Mbio | 2013

A Mouse Model for Human Norovirus

Stefan Taube; Abimbola O. Kolawole; Marina Höhne; John E. Wilkinson; Scott A. Handley; Jeffrey W. Perry; Larissa B. Thackray; Ramesh Akkina; Christiane E. Wobus

ABSTRACT Human noroviruses (HuNoVs) cause significant morbidity and mortality worldwide. However, despite substantial efforts, a small-animal model for HuNoV has not been described to date. Since “humanized” mice have been successfully used to study human-tropic pathogens in the past, we challenged BALB/c mice deficient in recombination activation gene (Rag) 1 or 2 and common gamma chain (γc) (Rag-γc) engrafted with human CD34+ hematopoietic stem cells, nonengrafted siblings, and immunocompetent wild-type controls with pooled stool isolates from patients positive for HuNoV. Surprisingly, both humanized and nonhumanized BALB/c Rag-γc-deficient mice supported replication of a GII.4 strain of HuNoV, as indicated by increased viral loads over input. In contrast, immunocompetent wild-type BALB/c mice were not infected. An intraperitoneal route of infection and the BALB/c genetic background were important for facilitating a subclinical HuNoV infection of Rag-γc-deficient mice. Expression of structural and nonstructural proteins was detected in cells with macrophage-like morphology in the spleens and livers of BALB/c Rag-γc-deficient mice, confirming the ability of HuNoV to replicate in a mouse model. In summary, HuNoV replication in BALB/c Rag-γc-deficient mice is dependent on the immune-deficient status of the host but not on the presence of human immune cells and provides the first genetically manipulable small-animal model for studying HuNoV infection. IMPORTANCE Human noroviruses are a significant cause of viral gastroenteritis worldwide, resulting in significant morbidity and mortality. Antivirals and vaccines are currently not available, in part due to the inability to study these viruses in a genetically manipulable, small-animal model. Herein, we report the first mouse model for human noroviruses. This model will accelerate our understanding of human norovirus biology and provide a useful resource for evaluating antiviral therapies. Human noroviruses are a significant cause of viral gastroenteritis worldwide, resulting in significant morbidity and mortality. Antivirals and vaccines are currently not available, in part due to the inability to study these viruses in a genetically manipulable, small-animal model. Herein, we report the first mouse model for human noroviruses. This model will accelerate our understanding of human norovirus biology and provide a useful resource for evaluating antiviral therapies.


Molecular Therapy | 2011

Systemic Administration of Combinatorial dsiRNAs via Nanoparticles Efficiently Suppresses HIV-1 Infection in Humanized Mice

Jiehua Zhou; C. Preston Neff; Xiaoxuan Liu; Jane Zhang; Haitang Li; David D. Smith; Piotr Swiderski; Tawfik A. Aboellail; Yuanyu Huang; Quan Du; Zicai Liang; Ling Peng; Ramesh Akkina; John J. Rossi

We evaluated the in vivo efficacy of structurally flexible, cationic PAMAM dendrimers as a small interfering RNA (siRNA) delivery system in a Rag2(-)/-γc-/- (RAG-hu) humanized mouse model for HIV-1 infection. HIV-infected humanized Rag2-/-γc-/- mice (RAG-hu) were injected intravenously (i.v.) with dendrimer-siRNA nanoparticles consisting of a cocktail of dicer substrate siRNAs (dsiRNAs) targeting both viral and cellular transcripts. We report in this study that the dendrimer-dsiRNA treatment suppressed HIV-1 infection by several orders of magnitude and protected against viral induced CD4(+) T-cell depletion. We also demonstrated that follow-up injections of the dendrimer-cocktailed dsiRNAs following viral rebound resulted in complete inhibition of HIV-1 titers. Biodistribution studies demonstrate that the dendrimer-dsiRNAs preferentially accumulate in peripheral blood mononuclear cells (PBMCs) and liver and do not exhibit any discernable toxicity. These data demonstrate for the first time efficacious combinatorial delivery of anti-host and -viral siRNAs for HIV-1 treatment in vivo. The dendrimer delivery approach therefore represents a promising method for systemic delivery of combinations of siRNAs for treatment of HIV-1 infection.

Collaboration


Dive into the Ramesh Akkina's collaboration.

Top Co-Authors

Avatar

John J. Rossi

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Preston Neff

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leila Remling

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Akhil Banerjea

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Brent E. Palmer

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Haitang Li

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ming-Jie Li

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paige Charlins

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge