Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley A. Ozenberger is active.

Publication


Featured researches published by Bradley A. Ozenberger.


Nature | 2008

Somatic mutations affect key pathways in lung adenocarcinoma

Li Ding; Gad Getz; David A. Wheeler; Elaine R. Mardis; Michael D. McLellan; Kristian Cibulskis; Carrie Sougnez; Heidi Greulich; Donna M. Muzny; Margaret Morgan; Lucinda Fulton; Robert S. Fulton; Qunyuan Zhang; Michael C. Wendl; Michael S. Lawrence; David E. Larson; Ken Chen; David J. Dooling; Aniko Sabo; Alicia Hawes; Hua Shen; Shalini N. Jhangiani; Lora Lewis; Otis Hall; Yiming Zhu; Tittu Mathew; Yanru Ren; Jiqiang Yao; Steven E. Scherer; Kerstin Clerc

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.


Nature Medicine | 2014

Age-related mutations associated with clonal hematopoietic expansion and malignancies.

Mingchao Xie; Charles Lu; Jiayin Wang; Michael D. McLellan; Kimberly J. Johnson; Michael C. Wendl; Joshua F. McMichael; Heather K. Schmidt; Venkata Yellapantula; Christopher A. Miller; Bradley A. Ozenberger; John S. Welch; Daniel C. Link; Matthew J. Walter; Elaine R. Mardis; John F. DiPersio; Feng Chen; Richard Wilson; Timothy J. Ley; Li Ding

Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. The Cancer Genome Atlas (TCGA) provides a unique resource for comprehensive discovery of mutations and genes in blood that may contribute to the clonal expansion of hematopoietic stem/progenitor cells. Here, we analyzed blood-derived sequence data from 2,728 individuals from TCGA and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia and/or lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5–6% of people older than 70 years) contain mutations that may represent premalignant events that cause clonal hematopoietic expansion.


JAMA | 2015

Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia

Jeffery M. Klco; Christopher A. Miller; Malachi Griffith; Allegra A. Petti; David H. Spencer; Shamika Ketkar-Kulkarni; Lukas D. Wartman; Matthew J. Christopher; Tamara Lamprecht; Nicole M. Helton; Eric J. Duncavage; Jacqueline E. Payton; Jack Baty; Sharon Heath; Obi L. Griffith; Dong Shen; Jasreet Hundal; Gue Su Chang; Robert S. Fulton; Michelle O'Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; David E. Larson; Shashikant Kulkarni; Bradley A. Ozenberger; John S. Welch; Matthew J. Walter; Timothy A. Graubert; Peter Westervelt

IMPORTANCE Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5% of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. [table: see text]. CONCLUSIONS AND RELEVANCE The detection of persistent leukemia-associated mutations in at least 5% of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML.


Nature Communications | 2015

Patterns and functional implications of rare germline variants across 12 cancer types

Charles Lu; Mingchao Xie; Michael C. Wendl; Jiayin Wang; Michael D. McLellan; Mark D. M. Leiserson; Kuan-lin Huang; Matthew A. Wyczalkowski; Reyka Jayasinghe; Tapahsama Banerjee; Jie Ning; Piyush Tripathi; Qunyuan Zhang; Beifang Niu; Kai Ye; Heather K. Schmidt; Robert S. Fulton; Joshua F. McMichael; Prag Batra; Cyriac Kandoth; Maheetha Bharadwaj; Daniel C. Koboldt; Christopher A. Miller; Krishna L. Kanchi; James M. Eldred; David E. Larson; John S. Welch; Ming You; Bradley A. Ozenberger; Ramaswamy Govindan

Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine.


Blood Cancer Journal | 2016

A genomic analysis of Philadelphia chromosome-negative AML arising in patients with CML

Kilannin Krysiak; Matthew J. Christopher; Zachary L. Skidmore; Ryan Demeter; Vincent Magrini; Jason Kunisaki; Michelle O'Laughlin; Eric J. Duncavage; Cheryl A. Miller; Bradley A. Ozenberger; Malachi Griffith; Lukas D. Wartman; Obi L. Griffith

Chronic myelogenous leukemia (CML) is characterized by the Philadelphia chromosome, an acquired clonal abnormality resulting from translocation of chromosomes 9 and 22, and the generation of the BCR–ABL fusion oncogene. The development of tyrosine kinase inhibitors (TKIs) has revolutionized the treatment of CML, as TKI therapy leads to inhibition of BCR–ABL activity, suppression of the BCR–ABL-containing clone and restoration of normal hematopoiesis in the vast majority of cases.


Cold Spring Harb Mol Case Stud | 2016

A common founding clone with TP53 and PTEN mutations gives rise to a concurrent germ cell tumor and acute megakaryoblastic leukemia

Charles Lu; Peter Riedell; Christopher A. Miller; Ian S. Hagemann; Peter Westervelt; Bradley A. Ozenberger; Michelle O'Laughlin; Vincent Magrini; Ryan Demeter; Eric J. Duncavage; Malachi Griffith; Obi L. Griffith; Lukas D. Wartman

We report the findings from a patient who presented with a concurrent mediastinal germ cell tumor (GCT) and acute myeloid leukemia (AML). Bone marrow pathology was consistent with a diagnosis of acute megakaryoblastic leukemia (AML M7), and biopsy of an anterior mediastinal mass was consistent with a nonseminomatous GCT. Prior studies have described associations between hematological malignancies, including AML M7 and nonseminomatous GCTs, and it was recently suggested that a common founding clone initiated both cancers. We performed enhanced exome sequencing on the GCT and the AML M7 from our patient to define the clonal relationship between the two cancers. We found that both samples contained somatic mutations in PTEN (C136R missense) and TP53 (R213 frameshift). The mutations in PTEN and TP53 were present at ∼100% variant allele frequency (VAF) in both tumors. In addition, we detected and validated five other shared somatic mutations. The copy-number analysis of the AML exome data revealed an amplification of Chromosome 12p. We also identified a heterozygous germline variant in FANCA (S858R), which is known to be associated with Fanconi anemia but is of uncertain significance here. In summary, our data not only support a common founding clone for these cancers but also suggest that a specific set of distinct genomic alterations (in PTEN and TP53) underlies the rare association between GCT and AML. This association is likely linked to the treatment resistance and extremely poor outcome of these patients. We cannot resolve the clonal evolution of these tumors given limitations of our data.


Cancer Research | 2015

Abstract PR03: Genomic approaches for risk assessment in acute myeloid leukemia

Jeffery M. Klco; Christopher A. Miller; Malachi Griffith; Allegra A. Petti; David H. Spencer; Shamika Ketkar-Kulkarni; Lukas D. Wartman; Matthew J. Christopher; Tamara Lamprecht; Jacqueline E. Payton; Jack Baty; Sharon Heath; Obi L. Griffith; Dong Shen; Jasreet Hundal; Gue Su Chang; Robert S. Fulton; Michelle O'Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; David E. Larson; Shashikant Kulkarni; Bradley A. Ozenberger; John S. Welch; Matthew J. Walker; Timothy A. Graubert; Peter Westervelt; Jerald P. Radich; Daniel C. Link

Acute myeloid leukemia is heterogeneous with respect to clinical outcome and molecular pathogenesis. Approximately 20% of AML cases are refractory to induction chemotherapy, and about 50% of patients ultimately relapse within a time interval that ranges from months to years. At the molecular level, diverse chromosomal abnormalities and genetic mutations have been observed across patients1. Although several clinical factors (age, white blood cell count), cytogenetic aberrations (t[15;17] translocation, loss of chromosome 5) 2-4, and genetic mutations (DNMT3A, FLT3) have been associated with differences in survival 5,6, these factors are of limited prognostic utility. Moreover, few studies have integrated sequence data with clinical and cytogentic factors to build predictive models of patient outcome. Here, we sought to identify genomic predictors of refractory disease or early relapse. We used whole genome and exome sequencing to analyze the genomes of 71 adult de novo AML patients treated with anthracycline and cytarabine-based induction chemotherapy. Of these, 34 had refractory disease or relapsed within 6 months, 12 relapsed in 6-12 months, and 25 had a long first remission (>12 months). We also developed an enhanced exome sequencing (EES) approach to identify and follow leukemia-associated variants over time. In 12 additional patients that achieved morphologic remission after induction chemotherapy, we used EES to identify and track variants at time of diagnosis, time of morphologic remission (roughly 30 days later), and a final time point corresponding to eventual relapse (n=8) or extended remission (n=4). No novel coding or non-coding variants present at the time of diagnosis were found to be predictive of refractory disease or early relapse. Using EES, however, we were able to detect leukemia-associated variants in the initial remission bone marrow in all eight patients who eventually relapsed. One persistent leukemia-associated variant was also detected in one patient still in remission, but all other variants in that patient were eliminated. We also detected 64 somatic variants that became enriched following chemotherapy, but were not detected in the original leukemic cells. These may represent relapse-specific variants or oligoclonal hematopoiesis after bone marrow recovery. Overall, our data suggest that the persistence of leukemia-associated variants after bone marrow recovery from cytotoxic therapy is strongly correlated with relapse, and may be used to complement more traditional, morphologic measures of leukemic cell clearance. 1. Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England Journal of Medicine 2013;368:2059-74. 2. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002;100:4325-36. 3. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010;116:354-65. 4. Schlenk RF, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. The New England Journal of Medicine 2008;358:1909-18. 5. Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia 2014;28:1586-95. 6. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. The New England Journal of Medicine 2010;363:2424-33. This abstract is also presented as a poster at the Translation of the Cancer Genome conference. Citation Format: Jeffery M. Klco, Christopher A. Miller, Malachi Griffith, Allegra Petti, David H. Spencer, Shamika Ketkar-Kulkarni, Lukas D. Wartman, Matthew Christopher, Tamara L. Lamprecht, Jacqueline E. Payton, Jack Baty, Sharon E. Heath, Obi L. Griffith, Dong Shen, Jasreet Hundal, Gue Su Chang, Robert S. Fulton, Michelle O9laughlin, Catrina Fronick, Vincent Magrini, Ryan Demeter, David E. Larson, Shashikant Kulkarni, Bradley A. Ozenberger, John S. Welch, Matthew J. Walker, Timothy A. Graubert, Peter Westervelt, Jerald P. Radich, Daniel C. Link, Elaine R. Mardis, John F. DiPersio, Richard K. Wilson. Genomic approaches for risk assessment in acute myeloid leukemia. [abstract]. In: Proceedings of the AACR Special Conference on Computational and Systems Biology of Cancer; Feb 8-11 2015; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2015;75(22 Suppl 2):Abstract nr PR03.


Journal of Clinical Oncology | 2017

Characteristics of 1q amplification in adenocarcinoma of the lung (LUAD).

Siddhartha Devarakonda; Saiama N. Waqar; Kalin Guebert; Leonard B. Maggi; Danielle Carpenter; Bradley A. Ozenberger; Ramaswamy Govindan; Daniel Morgensztern


Cancer Research | 2015

Abstract LB-109: Exome sequencing identifies common somatic mutations in an adult patient with a concurrent germ cell tumor (GCT) and acute myeloid leukemia (AML) suggesting a single clonal origin

Charles Lu; Peter Riedell; Peter Westervelt; Christopher J. Miller; Ian S. Hagemann; Eric J. Duncavage; Elaine R. Mardis; Richard Wilson; Bradley A. Ozenberger; Lukas D. Wartman

Collaboration


Dive into the Bradley A. Ozenberger's collaboration.

Top Co-Authors

Avatar

Christopher A. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lukas D. Wartman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Charles Lu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David E. Larson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eric J. Duncavage

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John S. Welch

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Malachi Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michelle O'Laughlin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Obi L. Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Peter Westervelt

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge