Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley D. Olsen is active.

Publication


Featured researches published by Bradley D. Olsen.


Journal of the American Chemical Society | 2009

Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement

Yan Xia; Bradley D. Olsen; Julia A. Kornfield; Robert H. Grubbs

Efficient, one-pot preparation of synthetically challenging, high molecular weight (MW), narrowly dispersed brush block copolymers and random copolymers in high conversions was achieved by ring-opening metathesis (co)polymerization (ROMP) of various macromonomers (MMs) using the highly active, fast-initiating ruthenium olefin metathesis catalyst (H(2)IMes)(pyr)(2)(Cl)(2)RuCHPh. A series of random and block copolymers were prepared from a pair of MMs containing polylactide (PLA) and poly(n-butyl acrylate) (PnBA) side chains at similar MWs. Their self-assembly in the melt state was studied by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). In brush random copolymers containing approximately equal volume fractions of PLA and PnBA, the side chains segregate into lamellae with domain spacing of 14 nm as measured by SAXS, which was in good agreement with the lamellar thickness measured by AFM. The domain spacings and order-disorder transition temperatures of brush random copolymers were insensitive to the backbone length. In contrast, brush block copolymers containing approximately equal volume fractions of these MMs self-assembled into highly ordered lamellae with domain spacing over 100 nm. Their assemblies suggested that the brush block copolymer backbone adopted an extended conformation in the ordered state.


ACS Nano | 2014

Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage.

Akhilesh K. Gaharwar; Reginald K. Avery; Alexander Assmann; Arghya Paul; Gareth H. McKinley; Ali Khademhosseini; Bradley D. Olsen

Internal hemorrhaging is a leading cause of death after traumatic injury on the battlefield. Although several surgical approaches such as the use of fibrin glue and tissue adhesive have been commercialized to achieve hemostasis, these approaches are difficult to employ on the battlefield and cannot be used for incompressible wounds. Here, we present shear-thinning nanocomposite hydrogels composed of synthetic silicate nanoplatelets and gelatin as injectable hemostatic agents. These materials are demonstrated to decrease in vitro blood clotting times by 77%, and to form stable clot-gel systems. In vivo tests indicated that the nanocomposites are biocompatible and capable of promoting hemostasis in an otherwise lethal liver laceration. The combination of injectability, rapid mechanical recovery, physiological stability, and the ability to promote coagulation result in a hemostat for treating incompressible wounds in out-of-hospital, emergency conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Counting primary loops in polymer gels

Huaxing Zhou; Jiyeon Woo; Alexandra M. Cok; Muzhou Wang; Bradley D. Olsen; Jeremiah A. Johnson

Much of our fundamental knowledge related to polymer networks is built on an assumption of ideal end-linked network structure. Real networks invariably possess topological imperfections that negatively affect mechanical properties; modifications of classical network theories have been developed to account for these defects. Despite decades of effort, there are no known experimental protocols for precise quantification of even the simplest topological network imperfections: primary loops. Here we present a simple conceptual framework that enables primary loop quantification in polymeric materials. We apply this framework to measure the fraction of primary loop junctions in trifunctional PEG-based hydrogels. We anticipate that the concepts described here will open new avenues of theoretical and experimental research related to polymer network structure.


Biotechnology Letters | 2003

Making thin polymeric materials, including fabrics, microbicidal and also water-repellent.

Jian Lin; Shashi K. Murthy; Bradley D. Olsen; Karen K. Gleason; Alexander M. Klibanov

A procedure is developed and validated for making a non-functionalized polyolefin fabric/film highly bactericidal and fungicidal which involves a free-radical grafting of maleic anhydride, followed by an attachment of polyethylenimine (PEI) and its subsequent N-alkylation. Separately, cotton fabric coated with a micron layer of a hydrophobic polymer using hot-filament chemical vapor deposition is rendered markedly hydrophobic; if this coating is preceded by immobilization of N-alkyl-PEI, the fabric becomes both water-repellent and bactericidal.


ACS Nano | 2011

Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein-Polymer Diblock Copolymer

Carla S. Thomas; Matthew J. Glassman; Bradley D. Olsen

Self-assembly of three-dimensional solid-state nanostructures containing approximately 33% by weight globular protein is demonstrated using a globular protein-polymer diblock copolymer, providing a route to direct nanopatterning of proteins for use in bioelectronic and biocatalytic materials. A mutant red fluorescent protein, mCherryS131C, was prepared by incorporation of a unique cysteine residue and site-specifically conjugated to end-functionalized poly(N-isopropylacrylamide) through thiol-maleimide coupling to form a well-defined model protein-polymer block copolymer. The block copolymer was self-assembled into bulk nanostructures by solvent evaporation from concentrated solutions. Small-angle X-ray scattering and transmission electron microscopy illustrated the formation of highly disordered lamellae or hexagonally perforated lamellae depending upon the selectivity of the solvent during evaporation. Solvent annealing of bulk samples resulted in a transition toward lamellar nanostructures with mCherry packed in a bilayer configuration and a large improvement in long-range ordering. Wide-angle X-ray scattering indicated that mCherry did not crystallize within the block copolymer nanodomains and that the β-sheet spacing was not affected by self-assembly. Circular dichroism showed no change in protein secondary structure after self-assembly, while UV-vis spectroscopy indicated approximately 35% of the chromophore remained optically active.


Science | 2016

Quantifying the impact of molecular defects on polymer network elasticity.

Mingjiang Zhong; Rui Wang; Ken Kawamoto; Bradley D. Olsen; Jeremiah A. Johnson

Elasticity, one of the most important properties of a soft material, is difficult to quantify in polymer networks because of the presence of topological molecular defects in these materials. Furthermore, the impact of these defects on bulk elasticity is unknown. We used rheology, disassembly spectrometry, and simulations to measure the shear elastic modulus and count the numbers of topological “loop” defects of various order in a series of polymer hydrogels, and then used these data to evaluate the classical phantom and affine network theories of elasticity. The results led to a real elastic network theory (RENT) that describes how loop defects affect bulk elasticity. Given knowledge of the loop fractions, RENT provides predictions of the shear elastic modulus that are consistent with experimental observations.


Biomacromolecules | 2012

Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers

Carla S. Thomas; Liza Xu; Bradley D. Olsen

Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form.


Journal of the American Chemical Society | 2015

Anomalous Self-Diffusion and Sticky Rouse Dynamics in Associative Protein Hydrogels

Shengchang Tang; Muzhou Wang; Bradley D. Olsen

Natural and synthetic materials based on associating polymers possess diverse mechanical behavior, transport properties and responsiveness to external stimuli. Although much is known about their dynamics on the molecular and macroscopic level, knowledge of self-diffusive dynamics of the network-forming constituents remains limited. Using forced Rayleigh scattering, anomalous self-diffusion is observed in model associating protein hydrogels originating from the interconversion between species that diffuse in both the molecular and associated state. The diffusion can be quantitatively modeled using a two-state model for polymers in the gel, where diffusivity in the associated state is critical to the super diffusive behavior. The dissociation time from bulk rheology measurements was 2-3 orders of magnitude smaller than the one measured by diffusion, because the former characterizes submolecular dissociation dynamics, whereas the latter depicts single protein molecules completely disengaging from the network. Rheological data also show a sticky Rouse-like relaxation at long times due to collective relaxation of large groups of proteins, suggesting mobility of associated molecules. This study experimentally demonstrates a hierarchy of relaxation processes in associating polymer networks, and it is anticipated that the results can be generalized to other associative systems to better understand the relationship of dynamics among sticky bonds, single molecules, and the entire network.


Soft Matter | 2013

Phase transitions in concentrated solution self-assembly of globular protein–polymer block copolymers

Christopher N. Lam; Bradley D. Olsen

The phase behaviour of mCherry-b-PNIPAM (mChP) block copolymers with four different PNIPAM coil fractions is investigated in concentrated aqueous solution as a function of both concentration and temperature, demonstrating both order–order transitions (OOTs) and order–disorder transitions (ODTs) in globular protein–polymer block copolymers. Independent of coil volume fraction from 0.25 to 0.70, the temperature–concentration phase diagrams share several common features. At low concentrations, mCherry-b-PNIPAM forms a homogeneous disordered phase, and macrophase separation into an ordered conjugate-rich phase and a solvent-rich phase is observed at temperatures above the PNIPAM thermoresponsive transition temperature. mChP solutions are also observed to undergo a low-temperature ODT driven by increasing concentration. The order–disorder transition concentration (ODTC) behaviour of mChP is minimized for symmetric conjugates, suggesting that repulsive solvent-mediated protein–polymer interactions provide a driving force for self-assembly. Both coil fraction and solvent selectivity have large effects on the morphologies formed—disordered micelles, hexagonally packed cylinders, lamellae, and perforated lamellae are identified with the combination of small-angle X-ray scattering (SAXS), depolarized light scattering (DPLS), turbidimetry, and differential scanning calorimetry (DSC). An OOT is observed upon increasing temperature for three of the studied coil fractions at concentrations of 40–50 wt% due to changing solvent selectivity. SANS contrast-matching experiments show that water is weakly selective for PNIPAM at low temperatures and strongly selective for mCherry at high temperatures.


Biomacromolecules | 2014

The Nature of Protein Interactions Governing Globular Protein–Polymer Block Copolymer Self-Assembly

Christopher N. Lam; Minkyu Kim; Carla S. Thomas; Dongsook Chang; Gabriel Sanoja; Chimdimma U. Okwara; Bradley D. Olsen

The effects of protein surface potential on the self-assembly of protein-polymer block copolymers are investigated in globular proteins with controlled shape through two approaches: comparison of self-assembly of mCherry-poly(N-isopropylacrylamide) (PNIPAM) bioconjugates with structurally homologous enhanced green fluorescent protein (EGFP)-PNIPAM bioconjugates, and mutants of mCherry with altered electrostatic patchiness. Despite large changes in amino acid sequence, the temperature-concentration phase diagrams of EGFP-PNIPAM and mCherry-PNIPAM conjugates have similar phase transition concentrations. Both materials form identical phases at two different coil fractions below the PNIPAM thermal transition temperature and in the bulk. However, at temperatures above the thermoresponsive transition, mCherry conjugates form hexagonal phases at high concentrations while EGFP conjugates form a disordered micellar phase. At lower concentration, mCherry shows a two-phase region while EGFP forms homogeneous disordered micellar structures, reflecting the effect of changes in micellar stability. Conjugates of four mCherry variants with changes to their electrostatic surface patchiness also showed minimal change in phase behavior, suggesting that surface patchiness has only a small effect on the self-assembly process. Measurements of protein/polymer miscibility, second virial coefficients, and zeta potential show that these coarse-grained interactions are similar between mCherry and EGFP, indicating that coarse-grained interactions largely capture the relevant physics for soluble, monomeric globular protein-polymer conjugate self-assembly.

Collaboration


Dive into the Bradley D. Olsen's collaboration.

Top Co-Authors

Avatar

Matthew J. Glassman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengchang Tang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Muzhou Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jeremiah A. Johnson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rui Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michelle K. Sing

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reginald K. Avery

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge