Bradley Efron
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bradley Efron.
Journal of the American Statistical Association | 1982
Bradley Efron
The Jackknife Estimate of Bias The Jackknife Estimate of Variance Bias of the Jackknife Variance Estimate The Bootstrap The Infinitesimal Jackknife The Delta Method and the Influence Function Cross-Validation, Jackknife and Bootstrap Balanced Repeated Replications (Half-Sampling) Random Subsampling Nonparametric Confidence Intervals.
Annals of Statistics | 2004
Bradley Efron; Trevor Hastie; Iain M. Johnstone; Robert Tibshirani; Hemant Ishwaran; Keith Knight; Jean-Michel Loubes; Pascal Massart; David Madigan; Greg Ridgeway; Saharon Rosset; J. Zhu; Robert A. Stine; Berwin A. Turlach; Sanford Weisberg
DISCUSSION OF “LEAST ANGLE REGRESSION” BY EFRONET AL.By Jean-Michel Loubes and Pascal MassartUniversit´e Paris-SudThe issue of model selection has drawn the attention of both applied andtheoretical statisticians for a long time. Indeed, there has been an enor-mous range of contribution in model selection proposals, including work byAkaike (1973), Mallows (1973), Foster and George (1994), Birg´e and Mas-sart (2001a) and Abramovich, Benjamini, Donoho and Johnstone (2000).Over the last decade, modern computer-driven methods have been devel-oped such as All Subsets, Forward Selection, Forward Stagewise or Lasso.Such methods are useful in the setting of the standard linear model, wherewe observe noisy data and wish to predict the response variable using onlya few covariates, since they provide automatically linear models that fit thedata. The procedure described in this paper is, on the one hand, numeri-cally very efficient and, on the other hand, very general, since, with slightmodifications, it enables us to recover the estimates given by the Lasso andStagewise.1. Estimation procedure. The “LARS” method is based on a recursiveprocedure selecting, at each step, the covariates having largest absolute cor-relation with the response y. In the case of an orthogonal design, the esti-mates can then be viewed as an lDISCUSSION OF “LEAST ANGLE REGRESSION” BY EFRONET AL.By Berwin A. TurlachUniversity of Western AustraliaI would like to begin by congratulating the authors (referred to belowas EHJT) for their interesting paper in which they propose a new variableselection method (LARS) for building linear models and show how their newmethod relates to other methods that have been proposed recently. I foundthe paper to be very stimulating and found the additional insight that itprovides about the Lasso technique to be of particular interest.My comments center around the question of how we can select linearmodels that conform with the marginality principle [Nelder (1977, 1994)and McCullagh and Nelder (1989)]; that is, the response surface is invariantunder scaling and translation of the explanatory variables in the model.Recently one of my interests was to explore whether the Lasso techniqueor the nonnegative garrote [Breiman (1995)] could be modified such that itincorporates the marginality principle. However, it does not seem to be atrivial matter to change the criteria that these techniques minimize in such away that the marginality principle is incorporated in a satisfactory manner.On the other hand, it seems to be straightforward to modify the LARStechnique to incorporate this principle. In their paper, EHJT address thisissue somewhat in passing when they suggest toward the end of Section 3that one first fit main effects only and interactions in a second step to controlthe order in which variables are allowed to enter the model. However, sucha two-step procedure may have a somewhat less than optimal behavior asthe following, admittedly artificial, example shows.Assume we have a vector of explanatory variables X =(XThe purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.
The American Statistician | 1983
Bradley Efron; Gail Gong
An apparatus for the in-situ detection of ions in a beam of an ion implanter device includes a mass spectrometer device having inner and outer walls and, a system for generating and directing an ion implant beam through the mass spectrometer device. The mass spectrometer device generates a magnetic field for directing ions of the ion implant beam of a desirable type through an aperture for implanting into a semiconductor wafer, and causing ions of undesirable type to collide with the inner or outer wall. For in-situ detection, a detector device is disposed on the inner and outer walls of the mass spectrometer for detecting the undesirable type of ions deflected. In one embodiment, the detector device comprises electronic sensor devices for detecting a concentration of the undesirable type ions which comprise undesirable elements and compounds. In another embodiment, the detector device comprises Faraday cup devices for detecting a concentration of ions of the undesirable type, or, may comprise a moving Faraday device positioned along tracks disposed respectively along the inner and outer wall, the Faraday being driven for reciprocal movement along a respective track. Data is collected from the sensors corresponding to the positions of undesirable ion detection and is processed, in real-time, during wafer processing. In this manner potential contaminants in the ion implant beam may be determined and corrective action may be taken in response.
Journal of the American Statistical Association | 1987
Bradley Efron
Abstract We consider the problem of setting approximate confidence intervals for a single parameter θ in a multiparameter family. The standard approximate intervals based on maximum likelihood theory, , can be quite misleading. In practice, tricks based on transformations, bias corrections, and so forth, are often used to improve their accuracy. The bootstrap confidence intervals discussed in this article automatically incorporate such tricks without requiring the statistician to think them through for each new application, at the price of a considerable increase in computational effort. The new intervals incorporate an improvement over previously suggested methods, which results in second-order correctness in a wide variety of problems. In addition to parametric families, bootstrap intervals are also developed for nonparametric situations.
Journal of the American Statistical Association | 1983
Bradley Efron
Abstract We construct a prediction rule on the basis of some data, and then wish to estimate the error rate of this rule in classifying future observations. Cross-validation provides a nearly unbiased estimate, using only the original data. Cross-validation turns out to be related closely to the bootstrap estimate of the error rate. This article has two purposes: to understand better the theoretical basis of the prediction problem, and to investigate some related estimators, which seem to offer considerably improved estimation in small samples.
Journal of the American Statistical Association | 2001
Bradley Efron; Robert Tibshirani; John D. Storey; Virginia Goss Tusher
Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typical microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous inference. We consider one such experiment in which oligonucleotide arrays were employed to assess the genetic effects of ionizing radiation on seven thousand human genes. A simple nonparametric empirical Bayes model is introduced, which is used to guide the efficient reduction of the data to a single summary statistic per gene, and also to make simultaneous inferences concerning which genes were affected by the radiation. Although our focus is on one specific experiment, the proposed methods can be applied quite generally. The empirical Bayes inferences are closely related to the frequentist false discovery rate (FDR) criterion.
Journal of the American Statistical Association | 1997
Bradley Efron; Robert Tibshirani
Abstract A training set of data has been used to construct a rule for predicting future responses. What is the error rate of this rule? This is an important question both for comparing models and for assessing a final selected model. The traditional answer to this question is given by cross-validation. The cross-validation estimate of prediction error is nearly unbiased but can be highly variable. Here we discuss bootstrap estimates of prediction error, which can be thought of as smoothed versions of cross-validation. We show that a particular bootstrap method, the .632+ rule, substantially outperforms cross-validation in a catalog of 24 simulation experiments. Besides providing point estimates, we also consider estimating the variability of an error rate estimate. All of the results here are nonparametric and apply to any possible prediction rule; however, we study only classification problems with 0–1 loss in detail. Our simulations include “smooth” prediction rules like Fishers linear discriminant fun...
Science | 1991
Bradley Efron; Robert Tibshirani
Most of our familiar statistical methods, such as hypothesis testing, linear regression, analysis of variance, and maximum likelihood estimation, were designed to be implemented on mechanical calculators. Modern electronic computation has encouraged a host of new statistical methods that require fewer distributional assumptions than their predecessors and can be applied to more complicated statistical estimators. These methods allow the scientist to explore and describe data and draw valid statistical inferences without the usual concerns for mathematical tractability. This is possible because traditional methods of mathematical analysis are replaced by specially constructed computer algorithms. Mathematics has not disappeared from statistical theory. It is the main method for deciding which algorithms are correct and efficient tools for automating statistical inference.
Journal of the American Statistical Association | 1977
Bradley Efron
Abstract D.R. Cox has suggested a simple method for the regression analysis of censored data. We carry out an information calculation which shows that Coxs method has full asymptotic efficiency under conditions which are likely to be satisfied in many realistic situations. The connection of Coxs method with the Kaplan-Meier estimator of a survival curve is made explicit.
Journal of the American Statistical Association | 1973
Bradley Efron; Carl N. Morris
Abstract Steins estimator for k normal means is known to dominate the MLE if k ≥ 3. In this article we ask if Steins estimator is any good in its own right. Our answer is yes: the positive part version of Steins estimator is one member of a class of “good” rules that have Bayesian properties and also dominate the MLE. Other members of this class are also useful in various situations. Our approach is by means of empirical Bayes ideas. In the later sections we discuss rules for more complicated estimation problems, and conclude with results from empirical linear Bayes rules in non-normal cases.