Bradley G. Fritz
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bradley G. Fritz.
Journal of Environmental Radioactivity | 2015
Bradley G. Fritz; J. Matthew Barnett; Sandra F. Snyder; Lynn E. Bisping; Jeremy P. Rishel
It is generally considered necessary to measure concentrations of contaminants-of-concern at a background location when conducting atmospheric environmental surveillance. This is because it is recognized that measurements of background concentrations can enhance interpretation of environmental monitoring data. Despite the recognized need for background measurements, there is little published guidance available that describes how to identify an appropriate atmospheric background monitoring location. This paper develops generic criteria that can guide the decision making process for identifying suitable locations for background atmospheric monitoring station. Detailed methods for evaluating some of these criteria are also provided and a case study for establishment of an atmospheric background surveillance station as part of an environmental surveillance program is described. While the case study focuses on monitoring for radionuclides, the approach is equally valid for any airborne constituent being monitored. The case study shows that implementation of the developed criteria can result in a good, defensible choice for a background atmospheric monitoring location.
IEEE Transactions on Nuclear Science | 2015
Richard J. Cameron; Bradley G. Fritz; Charles R. Hurlbut; Richard T. Kouzes; Ashley Ramey; Richard Smola
It has been observed that large polyvinyl toluene (PVT)-based gamma-ray detectors can suffer internal “fogging” when exposed to certain outdoor environmental conditions over long periods of time. When observed, this change results in reduced light collection by photomultiplier tubes connected to the PVT. Investigation of the physical cause of these changes has been explored, and a root cause identified. Water penetration into the PVT from hot, high-humidity conditions results in reversible internal water condensation at room temperature, and permanent micro-fracturing of the PVT at very low environmental temperatures. Mitigation procedures and methods are being investigated.
Journal of Environmental Radioactivity | 2017
Justin I. McIntyre; T.R. Alexander; Henning Back; B.J. Bellgraph; Theodore W. Bowyer; V. Chipman; Matthew W. Cooper; Anthony R. Day; S. Drellack; M.P. Foxe; Bradley G. Fritz; James C. Hayes; Paul H. Humble; Martin E. Keillor; Randy R. Kirkham; E.J. Krogstad; Justin D. Lowrey; Emily K. Mace; M.F. Mayer; Brian D. Milbrath; A. Misner; S.M. Morley; Mark E. Panisko; Khris B. Olsen; Mike D. Ripplinger; Allen Seifert; Reynold Suarez
Pacific Northwest National Laboratory reports on the detection of 39Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37Ar and 85Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39Ar from the fission product 85Kr. Proportional counters are currently used for high-sensitivity measurement of 37Ar and 39Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85Kr can be mistaken for that of 39Ar, and the presence of either isotope increases the measurement background level for the measurement of 37Ar. Measured values for the 39Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion.
Journal of Environmental Radioactivity | 2018
Bradley G. Fritz; Henning Back; James C. Hayes; Paul H. Humble; Pavlo Ivanusa; Emily K. Mace
The Comprehensive Nuclear-Test-Ban Treaty, which is intended to prevent nuclear weapon test explosions and any other nuclear explosions, includes a verification regime, which provides monitoring to identify potential nuclear explosions. The presence of elevated 37Ar is one way to identify subsurface nuclear explosive testing. However, the naturally occurring formation of 37Ar in the subsurface adds a complicating factor. Prediction of the naturally occurring concentration of 37Ar can help to determine if a measured 37Ar concentration is elevated relative to background. The naturally occurring 37Ar background concentration has been shown to vary between less than 1 mBq/m3 to greater than 100 mBq/m3 (Riedmann and Purtschert, 2011). The purpose of this work was to enhance the understanding of the naturally occurring background concentrations of 37Ar, allowing for better interpretation of results. To that end, we present and evaluate a computationally efficient model for predicting the average concentration of 37Ar at any depth under transient barometric pressures. Further, measurements of 37Ar concentrations in samples collected at multiple locations are provided as validation of the concentration prediction model. The model is shown to compare favorably with concentrations of 37Ar measured at multiple locations in the Northwestern United States.
Proceedings of SPIE | 2011
Bruce E. Bernacki; Norman C. Anheier; Albert Mendoza; Bradley G. Fritz; Timothy J. Johnson
We describe the use of a wind tunnel for conducting controlled passive hyperspectral imaging experiments. In recent years, passive hyperspectral detection of solids, minerals and ores has emerged as a very useful technique, for example for classifying land types, mineral deposits, and agricultural practices. Such techniques are also potentially useful for detecting explosives, solid-phase chemicals and other materials of interest from a distance so as to provide operator safety. The Pacific Northwest National Laboratory operates a wind tunnel facility that can generate and circulate artificial atmospheres whereby certain environmental parameters can be controlled such as lighting, humidity, temperature, aerosol and obscurant burdens. By selecting the appropriate fore-optics and sample size, one can conduct meaningful experiments under controlled conditions at relatively low cost when compared to typical field deployments. We will present recent results describing optimized sensing of solids over tens of meters distance using both visible and near-infrared cameras, as well as the effects of certain environmental parameters on data retrieval.
Air Quality, Atmosphere & Health | 2017
Philip J. Jensen; Tracy Tran; Bradley G. Fritz; Frederick C. Rutz; Steven B. Ross; Alicia Gorton; Ram Devanathan; Paul Plante; Kevin Trainor
This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the transport of sea salt aerosols (SSA). Results from DUSTRAN simulations run with historical meteorological data were compared against privately-measured chloride data at the near coastal Maine Yankee Nuclear Power Plant (NPP) and the Environmental Protection Agency-measured CASTNET data from Acadia National Park (NP). The comparisons have provided both encouragement as to the practical value of DUSTRAN’s CALPUFF model and suggestions for further software development opportunities. All modeled concentrations were within one order of magnitude of those measured and a few test cases showed excellent agreement between modeled and measured concentrations. However, there is a lack of consistency which may be due to inaccurate extrapolation of meteorological data, underlying model physics, and the source term. Future research will refine the software to better capture physical phenomena. Overall, results indicate that with parameter refinement, DUSTRAN has the potential to simulate atmospheric chloride transport from known sources to inland sites for the purpose of determining the corrosion susceptibility of various structures, systems, and components (SSC) at near coastal sites, and for other relevant air quality studies.
Ground Water | 2016
Bradley G. Fritz; Rob D. Mackley; Evan V. Arntzen
Slug tests performed using mini-piezometers with internal diameters as small as 0.43 cm can provide a cost effective tool for hydraulic characterization. We evaluated the hydraulic properties of the apparatus in a laboratory environment and compared those results with field tests of mini-piezometers installed into locations with varying hydraulic properties. Based on our evaluation, slug tests conducted in mini-piezometers using the fabrication and installation approach described here are effective within formations where the hydraulic conductivity is less than 1 × 10(-3) cm/s. While these constraints limit the potential application of this method, the benefits to this approach are that the installation, measurement, and analysis is cost effective, and the installation can be completed in areas where other (larger diameter) methods might not be possible. Additionally, this methodology could be applied to existing mini-piezometers previously installed for other purposes. Such analysis of existing installations could be beneficial in interpreting previously collected data (e.g., water-quality data or hydraulic head data).
nuclear science symposium and medical imaging conference | 2014
Richard J. Cameron; Bradley G. Fritz; Charles R. Hurlbut; Richard T. Kouzes; Ashley Ramey; Richard Smola
It has been observed that large polyvinyl toluene (PVT)-based gamma ray detectors can suffer internal “fogging” when exposed to outdoor environmental conditions over long periods of time. When observed, this change can result in reduced light collection and performance of the PVT. Investigation of the physical cause of these changes has been explored, and a root cause identified. Mitigation procedures and methods are being investigated.
Atmospheric Environment | 2008
William J. Shaw; K Jerry Allwine; Bradley G. Fritz; Frederick C. Rutz; Jeremy P. Rishel; Elaine G. Chapman
Archive | 2010
Vincent R. Vermeul; James P. McKinley; D. E. Newcomer; Bradley G. Fritz; Rob D. Mackley; John M. Zachara