Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley L. Jolliff is active.

Publication


Featured researches published by Bradley L. Jolliff.


Journal of Geophysical Research | 2000

Major lunar crustal terranes: Surface expressions and crust‐mantle origins

Bradley L. Jolliff; Jeffrey J. Gillis; Larry A. Haskin; Randy L. Korotev; Mark A. Wieczorek

In light of global remotely sensed data, the igneous crust of the Moon can no longer be viewed as a simple, globally stratified cumulus structure, composed of a flotation upper crust of anorthosite underlain by progressively more mafic rocks and a residual-melt (KREEP) sandwich horizon near the base of the lower crust. Instead, global geochemical information derived from Clementine multispectral data and Lunar Prospector gamma-ray data reveals at least three distinct provinces whose geochemistry and petrologic history make them geologically unique: (1) the Procellarum KREEP Terrane (PKT), (2) the Feldspathic High-lands Terrane (FHT), and (3) the South Pole-Aitken Terrane (SPAT). The PKT is a mafic province, coincident with the largely resurfaced area in the Procellarum-Imbrium region whose petrogenesis relates to the early differentiation of the Moon. Here, some 40% of the Th in the Moons crust is concentrated into a region that constitutes only about 10% of the crustal volume. This concentration of Th (average ∼5 ppm), and by implication the other heat producing elements, U and K, led to a fundamentally different thermal and igneous evolution within this region compared to other parts of the lunar crust. Lower-crustal materials within the PKT likely interacted with underlying mantle materials to produce hybrid magmatism, leading to the magnesian suite of lunar rocks and possibly KREEP basalt. Although rare in the Apollo sample collection, widespread mare volcanic rocks having substantial Th enrichment are indicated by the remote data and may reflect further interaction between enriched crustal residues and mantle sources. The FHT is characterized by a central anorthositic region that constitutes the remnant of an anorthositic craton resulting from early lunar differentiation. Basin impacts into this region do not excavate significantly more mafic material, suggesting a thickness of tens of kilometers of anorthositic crust. The feldspathic lunar meteorites may represent samples from the anorthositic central region of the FHT. Ejecta from deep-penetrating basin impacts outside of the central anorthositic region, however, indicate an increasingly mafic composition with depth. The SPAT, a mafic anomaly of great magnitude, may include material of the upper mantle as well as lower crust; thus it is designated a separate terrane. Whether the SPA basin impact simply uncovered lower crust such as we infer for the FHT remains to be determined.


Journal of Geophysical Research | 2000

Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images

Paul G. Lucey; David T. Blewett; Bradley L. Jolliff

The Clementine mission to the Moon returned global imaging data collected by the ultraviolet visible (UVVIS) camera. This data set is now in a final state of calibration, and a five-band multispectral digital image model (DIM) of the lunar surface will soon be available to the science community. We have used observations of the lunar sample-return sites and stations extracted from the final DIM in conjunction with compositional information for returned lunar soils to revise our previously published algorithms for the spectral determination of the FeO and TiO2 content of the lunar surface. The algorithms successfully normalize the effects of space weathering so that composition may be determined without regard to a surfaces state of maturity. These algorithms permit anyone with access to the standard archived DIM to construct high spatial resolution maps of FeO and TiO2 abundance. Such maps will be of great utility in a variety of lunar geologic studies.


Nature | 2005

Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater.

Larry A. Haskin; Alian Wang; Bradley L. Jolliff; Harry Y. McSween; Benton C. Clark; David J. Des Marais; Scott M. McLennan; Nicholas J. Tosca; Joel A. Hurowitz; Jack D. Farmer; Albert S. Yen; Steven W. Squyres; Raymond E. Arvidson; G. Klingelhöfer; C. Schröder; Paulo A. de Souza; Douglas W. Ming; Ralf Gellert; Jutta Zipfel; J. Brückner; James F. Bell; Kenneth E. Herkenhoff; Philip R. Christensen; Steve Ruff; Diana L. Blaney; S. Gorevan; Nathalie A. Cabrol; Larry S. Crumpler; John A. Grant; L. A. Soderblom

Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rovers tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown ‘global’ dust. The analyses of three rock interiors exposed by the rock abrasion tool showed that they are similar to one another, consistent with having originated from a common lava flow. Here we report the investigation of soils, rock coatings and rock interiors by the Spirit rover from sol (martian day) 1 to sol 156, from its landing site to the base of the Columbia hills. The physical and chemical characteristics of the materials analysed provide evidence for limited but unequivocal interaction between water and the volcanic rocks of the Gusev plains. This evidence includes the softness of rock interiors that contain anomalously high concentrations of sulphur, chlorine and bromine relative to terrestrial basalts and martian meteorites; sulphur, chlorine and ferric iron enrichments in multilayer coatings on the light-toned rock Mazatzal; high bromine concentration in filled vugs and veins within the plains basalts; positive correlations between magnesium, sulphur and other salt components in trench soils; and decoupling of sulphur, chlorine and bromine concentrations in trench soils compared to Gusev surface soils, indicating chemical mobility and separation.


Journal of Geophysical Research | 1997

Clementine images of the lunar sample‐return stations: Refinement of FeO and TiO2 mapping techniques

David T. Blewett; Paul G. Lucey; B. Ray Hawke; Bradley L. Jolliff

Clementine UVVIS images of the lunar sample-return sites have been processed and used to produce refined calibrations for the iron and titanium determination algorithms of Lucey et al. [1995, 1996]. The high spatial resolution of the Clementine data permits individual sampling stations to be resolved at the Apollo 15, 16, and 17 landing sites. We find an excellent, linear correlation between the spectral Fe and Ti parameters and the average FeO and TiO 2 contents of soils sampled at each site or station. This correlation demonstrates that these techniques can confidently be applied to other areas of the Moon. The Luna 24 site does not fit the Ti relation found for other sites, suggesting that either its sample is nonrepresentative or the reported landing coordinates are incorrect.


Science | 2004

Evidence from Opportunity's microscopic imager for water on Meridiani Planum

K. E. Herkenhoff; S. W. Squyres; Raymond E. Arvidson; D. S. Bass; James F. Bell; P. Bertelsen; B. L. Ehlmann; William H. Farrand; Lisa R. Gaddis; Ronald Greeley; John P. Grotzinger; Alexander G. Hayes; S. F. Hviid; James Richard Johnson; Bradley L. Jolliff; K. M. Kinch; Andrew H. Knoll; M. B. Madsen; J. N. Maki; Scott M. McLennan; Harry Y. McSween; D. W. Ming; James R Rice; L. Richter; M. Sims; Peter W. H. Smith; L. A. Soderblom; N. Spanovich; R. Sullivan; Shane D. Thompson

The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.


Journal of Geophysical Research | 2001

Rock types of South Pole‐Aitken basin and extent of basaltic volcanism

Carle M. Pieters; James W. Head; Lisa R. Gaddis; Bradley L. Jolliff; M. Duke

The enormous pre-Nectarian South Pole-Aitken (SPA) basin represents a geophysically and compositionally unique region on the Moon. We present and analyze the mineralogical diversity across this basin and discuss the implications for basin evolution. Rock types are derived from Clementine multispectral data based on diagnostic characteristics of ferrous absorptions in fresh materials. Individual areas are characterized as noritic (dominated by low-Ca pyroxene), gabbroic/basaltic (dominated by high-Ca pyroxene), feldspathic (<3–6% FeO), and olivine-gabbro (dominated by high-Ca pyroxene and olivine). The anorthositic crust has effectively been removed from the interior of the basin. The style of volcanism within the basin extends over several 100 Myr and includes mare basalt and pyroclastic deposits. Several areas of ancient (pre-Orientale) volcanism, or cryptomaria, have also been identified. The nonmare mafic lithology that occurs across the basin is shown to be noritic in composition and is pervasive laterally and vertically. We interpret this to represent impact melt/breccia deposits derived from the lower crust. A few localized areas are identified within the basin that contain more diverse lithologies (gabbro, olivine-gabbro), some of which may represent material from the deepest part of the lower crust and perhaps uppermost mantle involved in the SPA event.


Journal of Geophysical Research | 2006

Sulfate deposition in subsurface regolith in Gusev crater, Mars

Alian Wang; Larry A. Haskin; Steven W. Squyres; Bradley L. Jolliff; Larry S. Crumpler; Ralf Gellert; C. Schröder; Kenneth E. Herkenhoff; Joel A. Hurowitz; Nicholas J. Tosca; William H. Farrand; Robert C. Anderson; Amy T. Knudson

Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rovers exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up >20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen concentration observed by the Gamma-Ray Spectrometer on Odyssey in the Gusev region. Copyright 2006 by the American Geophysical Union.


Science | 2012

Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; F. Calef; B. C. Clark; Barbara A. Cohen; L.A. Crumpler; P. A. de Souza; William H. Farrand; Ralf Gellert; J. A. Grant; K. E. Herkenhoff; Joel A. Hurowitz; Jeffrey R. Johnson; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; T. J. Parker; G. Paulsen; Melissa S. Rice; Steven W. Ruff; Christian Schröder; Albert S. Yen; K. Zacny

Martian Veins After more than 7 years of traveling across the Meridiani Planum region of Mars, the Mars Exploration rover Opportunity reached the Endeavour Crater, a 22-km-impact crater made of materials older than those previously investigated by the rover. Squyres et al. (p. 570) present a comprehensive analysis of the rim of this crater. Localized zinc enrichments that provide evidence for hydrothermal alteration and gypsum-rich veins that were precipitated from liquid water at a relatively low temperature provide a compelling case for aqueous alteration processes in this area at ancient times. Analysis of data from the Mars Exploration Rover Opportunity provides evidence for past water flow near an ancient crater. The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.


Science | 2014

Ancient Aqueous Environments at Endeavour Crater, Mars

Raymond E. Arvidson; Steven W. Squyres; James F. Bell; Jeffrey G. Catalano; B. C. Clark; Larry S. Crumpler; P. A. de Souza; Alberto G. Fairén; William H. Farrand; V. K. Fox; R. Gellert; Anupam Ghosh; M. P. Golombek; John P. Grotzinger; Edward A. Guinness; K. E. Herkenhoff; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; J. M. Moore; Richard V. Morris; Scott L. Murchie; T. J. Parker; Gale Paulsen; J. W. Rice; Steven W. Ruff; M. D. Smith

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.


American Mineralogist | 2004

Raman spectroscopy of Fe-Ti-Cr-oxides, case study: Martian meteorite EETA79001

Alian Wang; Karla E. Kuebler; Bradley L. Jolliff; Larry A. Haskin

Abstract Raman spectral features of chromite, ulvöspinel, magnetite, ilmenite, hematite, and some of their solid solutions are presented. Although most Fe-Ti-Cr-oxides produce relatively weak Raman signals compared to oxyanionic minerals, sufficient information can be extracted from their spectra to identify the end-member mineral phases as well as some information about compositional variations in solid solutions. Correlations between Raman spectral features and mineral chemistry are used to interpret the Raman data of Fe-Ti-Cr oxides found during Raman point-count measurements on rock chips of Martian meteorite EETA79001, as an analog to Mars on-surface planetary investigations. In general, ulvöspinel, magnetite, and chromite end-members are readily distinguished by their Raman spectral patterns, as are ilmenite and hematite. In the low signal-to-noise (S/N) spectra generally obtained from the Raman point-count procedure, the position and shape of the strongest peak of Fe-Ti-Cr oxides in the region 660-680 cm-1 (A1g mode) is the most useful for discriminating Fe3+-Ti-Cr-Al substitutions in the magnetite-ulvöspinel, ulvöspinel-chromite, and chromite-spinel series, but minor peaks in the range 300-600 cm-1 also assist in discrimination. These spectral features are useful for investigating the variability among Fe-Ti-Cr-Al oxide solid solutions in natural samples. In EETA79001, a Martian basaltic meteorite, most of the oxide grains (as measured with the electron microprobe) are ulvöspinel, chromian ulvöspinel, and chromite, but ilmenite, titanian chromite, and titanomagnetite are also observed. The Fe-Ti-Cr-oxides identified by Raman point-count include end-member ilmenite, low-Al chromite-spinel solid solutions, ulvöspinel-magnetite solid solutions, and more complex chromitespinel- ulvöspinel-magnetite solid solutions; the latter exhibit a wide range of main peak positions and broadened peak widths that may reflect structural disorder as well as specific cation contents. One Raman spectrum suggests end-member magnetite, and one spectrum from a different rock chip appears to be that of non-terrestrial hematite, reflecting local oxidizing alteration, which has not been observed previously in this meteorite. These results show that analyses done in an automated mode on the surface of an unprepared Martian rock sample can provide useful constraints on the Fe-Ti-Cr oxide mineralogy present and on compositional variations within those minerals, including an indication of oxygen fugacity

Collaboration


Dive into the Bradley L. Jolliff's collaboration.

Top Co-Authors

Avatar

Randy L. Korotev

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alian Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

R. A. Zeigler

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

S. J. Lawrence

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge