Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley S. Barrett is active.

Publication


Featured researches published by Bradley S. Barrett.


PLOS Pathogens | 2012

A Single Nucleotide Polymorphism in Tetherin Promotes Retrovirus Restriction In Vivo

Bradley S. Barrett; Diana S. Smith; Sam X. Li; Kejun Guo; Kim J. Hasenkrug; Mario L. Santiago

Tetherin is a membrane protein of unusual topology expressed from rodents to humans that accumulates enveloped virus particles on the surface of infected cells. However, whether this ‘tethering’ activity promotes or restricts retroviral spread during acute retrovirus infection in vivo is controversial. We report here the identification of a single nucleotide polymorphism in the Tetherin gene of NZW/LacJ (NZW) mice that mutated the canonical ATG start site to GTG. Translation of NZW Tetherin from downstream ATGs deleted a conserved dual-tyrosine endosomal sorting motif, resulting in higher cell surface expression and more potent inhibition of Friend retrovirus release compared to C57BL/6 (B6) Tetherin in vitro. Analysis of (B6×NZW)F1 hybrid mice revealed that increased Tetherin cell surface expression in NZW mice is a recessive trait in vivo. Using a classical genetic backcrossing approach, NZW Tetherin expression strongly correlated with decreased Friend retrovirus replication and pathogenesis. However, the protective effect of NZW Tetherin was not observed in the context of B6 Apobec3/Rfv3 resistance. These findings identify the first functional Tetherin polymorphism within a mammalian host, demonstrate that Tetherin cell surface expression is a key parameter for retroviral restriction, and suggest the existence of a restriction factor hierarchy to counteract pathogenic retrovirus infections in vivo.


Journal of Immunology | 2014

Tetherin Promotes the Innate and Adaptive Cell–Mediated Immune Response against Retrovirus Infection In Vivo

Sam X. Li; Bradley S. Barrett; Karl J. Heilman; Ronald J. Messer; Rachel A. Liberatore; Paul D. Bieniasz; George Kassiotis; Kim J. Hasenkrug; Mario L. Santiago

Tetherin/BST-2 is a host restriction factor that could directly inhibit retroviral particle release by tethering nascent virions to the plasma membrane. However, the immunological impact of Tetherin during retrovirus infection remains unknown. We now show that Tetherin influences antiretroviral cell-mediated immune responses. In contrast to the direct antiviral effects of Tetherin, which are dependent on cell surface expression, the immunomodulatory effects are linked to the endocytosis of the molecule. Mice encoding endocytosis-competent C57BL/6 Tetherin exhibited lower viremia and pathology at 7 d postinfection with Friend retrovirus (FV) compared with mice encoding endocytosis-defective NZW/LacJ Tetherin. Notably, antiretroviral protection correlated with stronger NK cell responses. In addition, Friend retrovirus infection levels were significantly lower in wild-type C57BL/6 mice than in Tetherin knockout mice at 2 wk postinfection, and antiretroviral protection correlated with stronger NK cell and virus-specific CD8+ T cell responses. The results demonstrate that Tetherin acts as a modulator of the cell-mediated immune response against retrovirus infection in vivo.


PLOS Pathogens | 2011

Noninfectious retrovirus particles drive the APOBEC3/Rfv3 dependent neutralizing antibody response.

Diana S. Smith; Kejun Guo; Bradley S. Barrett; Karl J. Heilman; Leonard H. Evans; Kim J. Hasenkrug; Warner C. Greene; Mario L. Santiago

Members of the APOBEC3 family of deoxycytidine deaminases counteract a broad range of retroviruses in vitro through an indirect mechanism that requires virion incorporation and inhibition of reverse transcription and/or hypermutation of minus strand transcripts in the next target cell. The selective advantage to the host of this indirect restriction mechanism remains unclear, but valuable insights may be gained by studying APOBEC3 function in vivo. Apobec3 was previously shown to encode Rfv3, a classical resistance gene that controls the recovery of mice from pathogenic Friend retrovirus (FV) infection by promoting a more potent neutralizing antibody (NAb) response. The underlying mechanism does not involve a direct effect of Apobec3 on B cell function. Here we show that while Apobec3 decreased titers of infectious virus during acute FV infection, plasma viral RNA loads were maintained, indicating substantial release of noninfectious particles in vivo. The lack of plasma virion infectivity was associated with a significant post-entry block during early reverse transcription rather than G-to-A hypermutation. The Apobec3-dependent NAb response correlated with IgG binding titers against native, but not detergent-lysed virions. These findings indicate that innate Apobec3 restriction promotes NAb responses by maintaining high concentrations of virions with native B cell epitopes, but in the context of low virion infectivity. Finally, Apobec3 restriction was found to be saturable in vivo, since increasing FV inoculum doses resulted in decreased Apobec3 inhibition. By analogy, maximizing the release of noninfectious particles by modulating APOBEC3 expression may improve humoral immunity against pathogenic human retroviral infections.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection

Kalani Halemano; Kejun Guo; Karl J. Heilman; Bradley S. Barrett; Diana S. Smith; Kim J. Hasenkrug; Mario L. Santiago

Significance Antibodies are important for recovery from viral infections and vaccine efficacy. To improve the ability of antibodies to bind and neutralize viral pathogens, antibody DNA sequences undergo a mutational process driven by the enzyme activation-induced deaminase (AID). However, high levels of antibody mutations are required to potently inhibit global strains of the retrovirus HIV-1. We provide evidence that a related enzyme, apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 (APOBEC3), can also mutate antibodies during retrovirus infection, but in a different DNA sequence context compared to AID. The findings demonstrate that APOBEC3 acts as a key player in generating virus-specific neutralizing antibodies and highlight a previously unidentified mechanism for antibody diversification that could be harnessed for vaccine development. Somatic hypermutation (SHM) is an integral process in the development of high-affinity antibodies that are important for recovery from viral infections and vaccine-induced protection. Ig SHM occurs predominantly in germinal centers (GC) via the enzymatic activity of activation-induced deaminase (AID). In contrast, the evolutionarily related apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 3 (APOBEC3) proteins are known to restrict retroviruses, including HIV-1. We previously reported that mouse APOBEC3 encodes Recovery from Friend virus 3 (Rfv3), a classical resistance gene in mice that promotes the neutralizing antibody response against retrovirus infection. We now show that APOBEC3/Rfv3 complements AID in driving Ig SHM during retrovirus infection. Analysis of antibody sequences from retrovirus-specific hybridomas and GC B cells from infected mice revealed Ig heavy-chain V genes with significantly increased C-to-T and G-to-A transitions in wild-type as compared with APOBEC3-defective mice. The context of the mutations was consistent with APOBEC3 but not AID mutational activity. These findings help explain the role of APOBEC3/Rfv3 in promoting the neutralizing antibody responses essential for recovery from retroviral infection and highlight APOBEC3-mediated deamination as a previously unidentified mechanism for antibody diversification in vivo.


PLOS Pathogens | 2015

Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms

Michael S. Harper; Kejun Guo; Kathrin Gibbert; Eric J. Lee; Stephanie M. Dillon; Bradley S. Barrett; Martin D. McCarter; Kim J. Hasenkrug; Ulf Dittmer; Cara C. Wilson; Mario L. Santiago

HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.


Journal of Virology | 2011

Persistent Friend Virus Replication and Disease in Apobec3-Deficient Mice Expressing Functional B-Cell-Activating Factor Receptor

Mario L. Santiago; Diana S. Smith; Bradley S. Barrett; Mauricio Montano; Robert Benitez; Roberta Pelanda; Kim J. Hasenkrug; Warner C. Greene

ABSTRACT Rfv3 is an autosomal dominant gene that influences the recovery of resistant mice from Friend retrovirus (FV) infection by limiting viremia and promoting a more potent neutralizing antibody response. We previously reported that Rfv3 is encoded by Apobec3, an innate retrovirus restriction factor. However, it was recently suggested that the Rfv3 susceptible phenotype of high viremia at 28 days postinfection (dpi) was more dominantly controlled by the B-cell-activating factor receptor (BAFF-R), a gene that is linked to but located outside the genetically mapped region containing Rfv3. Although one prototypical Rfv3 susceptible mouse strain, A/WySn, indeed contains a dysfunctional BAFF-R, two other Rfv3 susceptible strains, BALB/c and A.BY, express functional BAFF-R genes, determined on the basis of genotyping and B-cell immunophenotyping. Furthermore, transcomplementation studies in (C57BL/6 [B6] × BALB/c)F1 and (B6 × A.BY)F1 mice revealed that the B6 Apobec3 gene significantly influences recovery from FV viremia, cellular infection, and disease at 28 dpi. Finally, the Rfv3 phenotypes of prototypic B6, A.BY, A/WySn, and BALB/c mouse strains correlate with reported Apobec3 mRNA expression levels. Overall, these findings argue against the generality of BAFF-R polymorphisms as a dominant mechanism to explain the Rfv3 recovery phenotype and further strengthen the evidence that Apobec3 encodes Rfv3.


Journal of Immunology | 2013

IFN-α Treatment Inhibits Acute Friend Retrovirus Replication Primarily through the Antiviral Effector Molecule Apobec3

Michael S. Harper; Bradley S. Barrett; Diana S. Smith; Sam X. Li; Kathrin Gibbert; Ulf Dittmer; Kim J. Hasenkrug; Mario L. Santiago

Therapeutic administration of IFN-α in clinical trials significantly reduced HIV-1 plasma viral load and human T-lymphotropic virus type I proviral load in infected patients. The mechanism may involve the concerted action of multiple antiretroviral effectors collectively known as “restriction factors,” which could vary in relative importance according to the magnitude of transcriptional induction. However, direct genetic approaches to identify the relevant IFN-α restriction factors will not be feasible in humans in vivo. Meanwhile, mice encode an analogous set of restriction factor genes and could be used to obtain insights on how IFN-α could inhibit retroviruses in vivo. As expected, IFN-α treatment of mice significantly upregulated the transcription of multiple restriction factors including Tetherin/BST2, SAMHD1, Viperin, ISG15, OAS1, and IFITM3. However, a dominant antiretroviral factor, Apobec3, was only minimally induced. To determine whether Apobec3 was necessary for direct IFN-α antiretroviral action in vivo, wild-type and Apobec3-deficient mice were infected with Friend retrovirus, then treated with IFN-α. Treatment of infected wild-type mice with IFN-α significantly reduced acute plasma viral load 28-fold, splenic proviral load 5-fold, bone marrow proviral load 14-fold, and infected bone marrow cells 7-fold, but no inhibition was observed in Apobec3-deficient mice. These findings reveal that IFN-α inhibits acute Friend retrovirus infection primarily through the antiviral effector Apobec3 in vivo, demonstrate that transcriptional induction levels did not predict the mechanism of IFN-α–mediated control, and highlight the potential of the human APOBEC3 proteins as therapeutic targets against pathogenic retrovirus infections.


Scientific Reports | 2016

Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection.

Sam X. Li; Bradley S. Barrett; Kejun Guo; George Kassiotis; Kim J. Hasenkrug; Ulf Dittmer; Kathrin Gibbert; Mario L. Santiago

Tetherin/BST-2 is a host restriction factor that inhibits retrovirus release from infected cells in vitro by tethering nascent virions to the plasma membrane. However, contradictory data exists on whether Tetherin inhibits acute retrovirus infection in vivo. Previously, we reported that Tetherin-mediated inhibition of Friend retrovirus (FV) replication at 2 weeks post-infection correlated with stronger natural killer, CD4+ T and CD8+ T cell responses. Here, we further investigated the role of Tetherin in counteracting retrovirus replication in vivo. FV infection levels were similar between wild-type (WT) and Tetherin KO mice at 3 to 7 days post-infection despite removal of a potent restriction factor, Apobec3/Rfv3. However, during this phase of acute infection, Tetherin enhanced myeloid dendritic cell (DC) function. DCs from infected, but not uninfected, WT mice expressed significantly higher MHC class II and the co-stimulatory molecule CD80 compared to Tetherin KO DCs. Tetherin-associated DC activation during acute FV infection correlated with stronger NK cell responses. Furthermore, Tetherin+ DCs from FV-infected mice more strongly stimulated FV-specific CD4+ T cells ex vivo compared to Tetherin KO DCs. The results link the antiretroviral and immunomodulatory activity of Tetherin in vivo to improved DC activation and MHC class II antigen presentation.


Virology | 2014

Reassessment of murine APOBEC1 as a retrovirus restriction factor in vivo

Bradley S. Barrett; Kejun Guo; Michael S. Harper; Sam X. Li; Karl J. Heilman; Nicholas O. Davidson; Mario L. Santiago

APOBEC1 is a cytidine deaminase involved in cholesterol metabolism that has been linked to retrovirus restriction, analogous to the evolutionarily-related APOBEC3 proteins. In particular, murine APOBEC1 was shown to inhibit Friend retrovirus (FV) in vitro, generating high levels of C-to-T and G-to-A mutations. These observations raised the possibility that FV infection might be altered in APOBEC1-null mice. To examine this question directly, we infected wild-type and APOBEC1-null mice with FV complex and evaluated acute infection levels. Surprisingly, APOBEC1-null mice exhibited similar cellular infection levels and plasma viremia relative to wild-type mice. Moreover, next-generation sequencing analyses revealed that in contrast to APOBEC3, APOBEC1 did not enhance retroviral C-to-T and G-to-A mutational frequencies in genomic DNA. Thus, APOBEC1 neither inhibited nor significantly drove the molecular evolution of FV in vivo. Our findings reinforce that not all retrovirus restriction factors characterized as potent in vitro may be functionally relevant in vivo.


Virology | 2013

Ribonuclease L is not critical for innate restriction and adaptive immunity against Friend retrovirus infection

Sam X. Li; Bradley S. Barrett; Michael S. Harper; Karl J. Heilman; Kalani Halemano; Amanda K. Steele; Kejun Guo; Robert H. Silverman; Mario L. Santiago

Ribonuclease L (RNase L) is a type I interferon regulated factor that can significantly inhibit retroviruses in vitro and may activate cytoplasmic sensing pathways to augment adaptive immunity. However, the antiretroviral activity of RNase L remains to be validated in vivo. We investigated the role of RNaseL in counteracting Friend retrovirus (FV) infection relative to a well-described restriction factor, Apobec3. C57BL/6 wild-type (WT) and RNaseL knock-out (KO) mice exhibited similar acute FV infection levels despite significant transcriptional induction of oligoadenylate synthetase 1, which produces activators of RNase L. Apobec3 KO mice showed higher FV infection levels relative to WT mice, but deletion of RNaseL in Apobec3 KO mice did not augment FV infection. Moreover, RNaseL did not influence FV-specific IgG responses and recovery from viremia by 28 days post-infection. The results suggest that RNase L is not an evolutionarily-conserved host defense mechanism to counteract retroviruses in vivo.

Collaboration


Dive into the Bradley S. Barrett's collaboration.

Top Co-Authors

Avatar

Mario L. Santiago

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Karl J. Heilman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kejun Guo

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kim J. Hasenkrug

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sam X. Li

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael S. Harper

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Diana S. Smith

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Alvin M. Malkinson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kalani Halemano

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Lori D. Dwyer-Nield

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge