Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kejun Guo is active.

Publication


Featured researches published by Kejun Guo.


Journal of Virology | 2015

APOBEC3A Functions as a Restriction Factor of Human Papillomavirus

Cody J. Warren; Tao Xu; Kejun Guo; Laura M. Griffin; Joseph A. Westrich; Denis Lee; Paul F. Lambert; Mario L. Santiago; Dohun Pyeon

ABSTRACT Human papillomaviruses (HPVs) are small DNA viruses causally associated with benign warts and multiple cancers, including cervical and head-and-neck cancers. While the vast majority of people are exposed to HPV, most instances of infection are cleared naturally. However, the intrinsic host defense mechanisms that block the early establishment of HPV infections remain mysterious. Several antiviral cytidine deaminases of the human APOBEC3 (hA3) family have been identified as potent viral DNA mutators. While editing of HPV genomes in benign and premalignant cervical lesions has been demonstrated, it remains unclear whether hA3 proteins can directly inhibit HPV infection. Interestingly, recent studies revealed that HPV-positive cervical and head-and-neck cancers exhibited higher rates of hA3 mutation signatures than most HPV-negative cancers. Here, we report that hA3A and hA3B expression levels are highly upregulated in HPV-positive keratinocytes and cervical tissues in early stages of cancer progression, potentially through a mechanism involving the HPV E7 oncoprotein. HPV16 virions assembled in the presence of hA3A, but not in the presence of hA3B or hA3C, have significantly decreased infectivity compared to HPV virions assembled without hA3A or with a catalytically inactive mutant, hA3A/E72Q. Importantly, hA3A knockdown in human keratinocytes results in a significant increase in HPV infectivity. Collectively, our findings suggest that hA3A acts as a restriction factor against HPV infection, but the induction of this restriction mechanism by HPV may come at a cost to the host by promoting cancer mutagenesis. IMPORTANCE Human papillomaviruses (HPVs) are highly prevalent and potent human pathogens that cause >5% of all human cancers, including cervical and head-and-neck cancers. While the majority of people become infected with HPV, only 10 to 20% of infections are established as persistent infections. This suggests the existence of intrinsic host defense mechanisms that inhibit viral persistence. Using a robust method to produce infectious HPV virions, we demonstrate that hA3A, but not hA3B or hA3C, can significantly inhibit HPV infectivity. Moreover, hA3A and hA3B were coordinately induced in HPV-positive clinical specimens during cancer progression, likely through an HPV E7 oncoprotein-dependent mechanism. Interestingly, HPV-positive cervical and head-and-neck cancer specimens were recently shown to harbor significant amounts of hA3 mutation signatures. Our findings raise the intriguing possibility that the induction of this host restriction mechanism by HPV may also trigger hA3A- and hA3B-induced cancer mutagenesis.


Journal of Virology | 2016

Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection In Vivo

Kerry J. Lavender; Kathrin Gibbert; Karin E. Peterson; Erik Van Dis; Sandra Francois; Tyson Woods; Ronald J. Messer; Ali Gawanbacht; Janis A. Müller; Jan Münch; Katie Phillips; Brent Race; Michael S. Harper; Kejun Guo; Eric J. Lee; Mirko Trilling; Hartmut Hengel; Jacob Piehler; Jens Verheyen; Cara C. Wilson; Mario L. Santiago; Kim J. Hasenkrug; Ulf Dittmer

ABSTRACT Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro. We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads. Furthermore, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-α14 but not IFN-α2. Whereas ineffective IFN-α2 therapy was associated with CD8+ T cell activation, successful IFN-α14 therapy was associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, increased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL+ NK cells. These results identify IFN-α14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The ability of IFN-α14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-α subtype should be evaluated against the specific virus being treated. IMPORTANCE The naturally occurring antiviral protein IFN-α2 is used to treat hepatitis viruses but has proven rather ineffective against HIV in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to completely clear infections. Since IFN-α acts by different mechanism than ARVs and has been shown to reduce HIV proviral loads, clinical trials are under way to test whether IFN-α2 combined with ARVs might eradicate HIV-1 infections. IFN-α is actually a family of 12 distinct proteins, and each IFN-α subtype has different efficacies toward different viruses. Here, we use mice that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-α2 is only weakly effective against HIV, IFN-α14 is extremely potent. This discovery identifies IFN-α14 as a more powerful IFN-α subtype for use in combination therapy trials aimed toward an HIV cure.


PLOS Pathogens | 2012

A Single Nucleotide Polymorphism in Tetherin Promotes Retrovirus Restriction In Vivo

Bradley S. Barrett; Diana S. Smith; Sam X. Li; Kejun Guo; Kim J. Hasenkrug; Mario L. Santiago

Tetherin is a membrane protein of unusual topology expressed from rodents to humans that accumulates enveloped virus particles on the surface of infected cells. However, whether this ‘tethering’ activity promotes or restricts retroviral spread during acute retrovirus infection in vivo is controversial. We report here the identification of a single nucleotide polymorphism in the Tetherin gene of NZW/LacJ (NZW) mice that mutated the canonical ATG start site to GTG. Translation of NZW Tetherin from downstream ATGs deleted a conserved dual-tyrosine endosomal sorting motif, resulting in higher cell surface expression and more potent inhibition of Friend retrovirus release compared to C57BL/6 (B6) Tetherin in vitro. Analysis of (B6×NZW)F1 hybrid mice revealed that increased Tetherin cell surface expression in NZW mice is a recessive trait in vivo. Using a classical genetic backcrossing approach, NZW Tetherin expression strongly correlated with decreased Friend retrovirus replication and pathogenesis. However, the protective effect of NZW Tetherin was not observed in the context of B6 Apobec3/Rfv3 resistance. These findings identify the first functional Tetherin polymorphism within a mammalian host, demonstrate that Tetherin cell surface expression is a key parameter for retroviral restriction, and suggest the existence of a restriction factor hierarchy to counteract pathogenic retrovirus infections in vivo.


PLOS Pathogens | 2011

Noninfectious retrovirus particles drive the APOBEC3/Rfv3 dependent neutralizing antibody response.

Diana S. Smith; Kejun Guo; Bradley S. Barrett; Karl J. Heilman; Leonard H. Evans; Kim J. Hasenkrug; Warner C. Greene; Mario L. Santiago

Members of the APOBEC3 family of deoxycytidine deaminases counteract a broad range of retroviruses in vitro through an indirect mechanism that requires virion incorporation and inhibition of reverse transcription and/or hypermutation of minus strand transcripts in the next target cell. The selective advantage to the host of this indirect restriction mechanism remains unclear, but valuable insights may be gained by studying APOBEC3 function in vivo. Apobec3 was previously shown to encode Rfv3, a classical resistance gene that controls the recovery of mice from pathogenic Friend retrovirus (FV) infection by promoting a more potent neutralizing antibody (NAb) response. The underlying mechanism does not involve a direct effect of Apobec3 on B cell function. Here we show that while Apobec3 decreased titers of infectious virus during acute FV infection, plasma viral RNA loads were maintained, indicating substantial release of noninfectious particles in vivo. The lack of plasma virion infectivity was associated with a significant post-entry block during early reverse transcription rather than G-to-A hypermutation. The Apobec3-dependent NAb response correlated with IgG binding titers against native, but not detergent-lysed virions. These findings indicate that innate Apobec3 restriction promotes NAb responses by maintaining high concentrations of virions with native B cell epitopes, but in the context of low virion infectivity. Finally, Apobec3 restriction was found to be saturable in vivo, since increasing FV inoculum doses resulted in decreased Apobec3 inhibition. By analogy, maximizing the release of noninfectious particles by modulating APOBEC3 expression may improve humoral immunity against pathogenic human retroviral infections.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection

Kalani Halemano; Kejun Guo; Karl J. Heilman; Bradley S. Barrett; Diana S. Smith; Kim J. Hasenkrug; Mario L. Santiago

Significance Antibodies are important for recovery from viral infections and vaccine efficacy. To improve the ability of antibodies to bind and neutralize viral pathogens, antibody DNA sequences undergo a mutational process driven by the enzyme activation-induced deaminase (AID). However, high levels of antibody mutations are required to potently inhibit global strains of the retrovirus HIV-1. We provide evidence that a related enzyme, apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 (APOBEC3), can also mutate antibodies during retrovirus infection, but in a different DNA sequence context compared to AID. The findings demonstrate that APOBEC3 acts as a key player in generating virus-specific neutralizing antibodies and highlight a previously unidentified mechanism for antibody diversification that could be harnessed for vaccine development. Somatic hypermutation (SHM) is an integral process in the development of high-affinity antibodies that are important for recovery from viral infections and vaccine-induced protection. Ig SHM occurs predominantly in germinal centers (GC) via the enzymatic activity of activation-induced deaminase (AID). In contrast, the evolutionarily related apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 3 (APOBEC3) proteins are known to restrict retroviruses, including HIV-1. We previously reported that mouse APOBEC3 encodes Recovery from Friend virus 3 (Rfv3), a classical resistance gene in mice that promotes the neutralizing antibody response against retrovirus infection. We now show that APOBEC3/Rfv3 complements AID in driving Ig SHM during retrovirus infection. Analysis of antibody sequences from retrovirus-specific hybridomas and GC B cells from infected mice revealed Ig heavy-chain V genes with significantly increased C-to-T and G-to-A transitions in wild-type as compared with APOBEC3-defective mice. The context of the mutations was consistent with APOBEC3 but not AID mutational activity. These findings help explain the role of APOBEC3/Rfv3 in promoting the neutralizing antibody responses essential for recovery from retroviral infection and highlight APOBEC3-mediated deamination as a previously unidentified mechanism for antibody diversification in vivo.


Virology | 2011

Differential virus restriction patterns of rhesus macaque and human APOBEC3A: Implications for lentivirus evolution

Kimberly Schmitt; Kejun Guo; Malinda Algaier; Autumn Ruiz; Fang Cheng; Jianming Qiu; Silke Wissing; Mario L. Santiago; Edward B. Stephens

The human apolipoprotein B mRNA editing enzyme catalytic peptide-like 3 (APOBEC3; A3) family of proteins (A3A-H) are known to restrict various retroviruses and retroelements, but the full complement of rhesus macaque A3 proteins remains unclear. We report the isolation and characterization of the hA3A homologue from rhesus macaques (rhA3A) and show that the rhesus macaque and human A3 genes are orthologous. RhA3A is expressed at high levels in activated CD4+ T cells, is widely expressed in macaque tissues, and is degraded in the presence of the human immunodeficiency virus (HIV-1) and simian-human immunodeficiency virus (SHIV) genomes. Our results indicate that rhA3A is a potent inhibitor of SHIVΔvif and to a lesser extent HIV-1Δvif. Unlike hA3A, rhA3A did not inhibit adeno-associated virus 2 (AAV-2) replication and L1 retrotransposition. These data suggest an evolutionary switch in primate A3A virus specificity and provide the first evidence that a primate A3A can inhibit lentivirus replication.


PLOS Pathogens | 2015

Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms

Michael S. Harper; Kejun Guo; Kathrin Gibbert; Eric J. Lee; Stephanie M. Dillon; Bradley S. Barrett; Martin D. McCarter; Kim J. Hasenkrug; Ulf Dittmer; Cara C. Wilson; Mario L. Santiago

HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.


Retrovirology | 2016

Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection

Stephanie M. Dillon; Eric J. Lee; Andrew M. Donovan; Kejun Guo; Michael S. Harper; Daniel N. Frank; Martin D. McCarter; Mario L. Santiago; Cara C. Wilson

BackgroundEarly HIV-1 infection is characterized by high levels of HIV-1 replication and substantial CD4 T cell depletion in the intestinal mucosa, intestinal epithelial barrier breakdown, and microbial translocation. HIV-1-induced disruption of intestinal homeostasis has also been associated with changes in the intestinal microbiome that are linked to mucosal and systemic immune activation. In this study, we investigated the impact of representative bacterial species that were altered in the colonic mucosa of viremic HIV-1 infected individuals (HIV-altered mucosal bacteria; HAMB) on intestinal CD4 T cell function, infection by HIV-1, and survival in vitro. Lamina propria (LP) mononuclear cells were infected with CCR5-tropic HIV-1BaL or mock infected, exposed to high (3 gram-negative) or low (2 gram-positive) abundance HAMB or control gram-negative Escherichia coli and levels of productive HIV-1 infection and CD4 T cell depletion assessed. HAMB-associated changes in LP CD4 T cell activation, proliferation and HIV-1 co-receptor expression were also evaluated.ResultsThe majority of HAMB increased HIV-1 infection and depletion of LP CD4 T cells, but gram-negative HAMB enhanced CD4 T cell infection to a greater degree than gram-positive HAMB. Most gram-negative HAMB enhanced T cell infection to levels similar to that induced by gram-negative E. coli despite lower induction of T cell activation and proliferation by HAMB. Both gram-negative HAMB and E. coli significantly increased expression of HIV-1 co-receptor CCR5 on LP CD4 T cells. Lipopolysaccharide, a gram-negative bacteria cell wall component, up-regulated CCR5 expression on LP CD4 T cells whereas gram-positive cell wall lipoteichoic acid did not. Upregulation of CCR5 by gram-negative HAMB was largely abrogated in CD4 T cell-enriched cultures suggesting an indirect mode of stimulation.ConclusionsGram-negative commensal bacteria that are altered in abundance in the colonic mucosa of HIV-1 infected individuals have the capacity to enhance CCR5-tropic HIV-1 productive infection and depletion of LP CD4 T cells in vitro. Enhanced infection appears to be primarily mediated indirectly through increased expression of CCR5 on LP CD4 T cells without concomitant large scale T cell activation. This represents a novel mechanism potentially linking intestinal dysbiosis to HIV-1 mucosal pathogenesis.


Scientific Reports | 2016

Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection.

Sam X. Li; Bradley S. Barrett; Kejun Guo; George Kassiotis; Kim J. Hasenkrug; Ulf Dittmer; Kathrin Gibbert; Mario L. Santiago

Tetherin/BST-2 is a host restriction factor that inhibits retrovirus release from infected cells in vitro by tethering nascent virions to the plasma membrane. However, contradictory data exists on whether Tetherin inhibits acute retrovirus infection in vivo. Previously, we reported that Tetherin-mediated inhibition of Friend retrovirus (FV) replication at 2 weeks post-infection correlated with stronger natural killer, CD4+ T and CD8+ T cell responses. Here, we further investigated the role of Tetherin in counteracting retrovirus replication in vivo. FV infection levels were similar between wild-type (WT) and Tetherin KO mice at 3 to 7 days post-infection despite removal of a potent restriction factor, Apobec3/Rfv3. However, during this phase of acute infection, Tetherin enhanced myeloid dendritic cell (DC) function. DCs from infected, but not uninfected, WT mice expressed significantly higher MHC class II and the co-stimulatory molecule CD80 compared to Tetherin KO DCs. Tetherin-associated DC activation during acute FV infection correlated with stronger NK cell responses. Furthermore, Tetherin+ DCs from FV-infected mice more strongly stimulated FV-specific CD4+ T cells ex vivo compared to Tetherin KO DCs. The results link the antiretroviral and immunomodulatory activity of Tetherin in vivo to improved DC activation and MHC class II antigen presentation.


AIDS | 2017

Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation.

Stephanie M. Dillon; Kibbie J; Eric J. Lee; Kejun Guo; Mario L. Santiago; Gregory L. Austin; Sara Gianella; Alan Landay; Donovan Am; Daniel N. Frank; McCarter; Cara C. Wilson

Objective:Gut microbial translocation is a major driving force behind chronic immune activation during HIV-1 infection. HIV-1-related intestinal dysbiosis, including increases in mucosa-associated pathobionts, may influence microbial translocation and contribute to mucosal and systemic inflammation. Thus, it is critical to understand the mechanisms by which gut microbes and their metabolic products, such as butyrate, influence immune cell function during HIV-1 infection. Design:A cross-sectional study was performed to compare the relative abundance of butyrate-producing bacterial (BPB) species in colonic biopsies and stool of untreated, chronic HIV-1-infected (n = 18) and HIV-1-uninfected (n = 14) study participants. The effect of exogenously added butyrate on gut T-cell activation and HIV-1 infection was evaluated using an ex-vivo human intestinal cell culture model. Methods:Species were identified in 16S ribosomal RNA sequence datasets. Ex-vivo isolated lamina propria mononuclear cells were infected with C-C chemokine receptor type 5-tropic HIV-1Bal, cultured with enteric gram-negative bacteria and a range of butyrate doses, and lamina propria T-cell activation and HIV-1 infection levels measured. Results:Relative abundance of total BPB and specifically of Roseburia intestinalis, were lower in colonic mucosa of HIV-1-infected versus HIV-1-uninfected individuals. In HIV-1-infected study participants, R. intestinalis relative abundance inversely correlated with systemic indicators of microbial translocation, immune activation, and vascular inflammation. Exogenous butyrate suppressed enteric gram-negative bacteria-driven lamina propria T-cell activation and HIV-1 infection levels in vitro. Conclusion:Reductions in mucosal butyrate from diminished colonic BPB may exacerbate pathobiont-driven gut T-cell activation and HIV replication, thereby contributing to HIV-associated mucosal pathogenesis.

Collaboration


Dive into the Kejun Guo's collaboration.

Top Co-Authors

Avatar

Mario L. Santiago

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Bradley S. Barrett

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael S. Harper

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Karl J. Heilman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kim J. Hasenkrug

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sam X. Li

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Cara C. Wilson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Lee

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kalani Halemano

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge