Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bradley S. Gordon is active.

Publication


Featured researches published by Bradley S. Gordon.


The International Journal of Biochemistry & Cell Biology | 2013

Regulation of muscle protein synthesis and the effects of catabolic states.

Bradley S. Gordon; Andrew R. Kelleher; Scot R. Kimball

Protein synthesis and degradation are dynamically regulated processes that act in concert to control the accretion or loss of muscle mass. The present article focuses on the mechanisms involved in the impairment of protein synthesis that are associated with skeletal muscle atrophy. The vast majority of mechanisms known to regulate protein synthesis involve modulation of the initiation phase of mRNA translation, which comprises a series of reactions that result in the binding of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. The function of the proteins involved in both events has been shown to be repressed under atrophic conditions such as sepsis, cachexia, chronic kidney disease, sarcopenia, and disuse atrophy. The basis for the inhibition of protein synthesis under such conditions is likely to be multifactorial and includes insulin/insulin-like growth factor 1 resistance, pro-inflammatory cytokine expression, malnutrition, corticosteroids, and/or physical inactivity. The present article provides an overview of the existing literature regarding mechanisms and signaling pathways involved in the regulation of mRNA translation as they apply to skeletal muscle wasting, as well as the efficacy of potential clinical interventions such as nutrition and exercise in the maintenance of skeletal muscle protein synthesis under atrophic conditions. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Cellular Signalling | 2014

RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.

Bradley S. Gordon; Abid A. Kazi; Catherine S. Coleman; Michael D. Dennis; Vincent Chau; Leonard S. Jefferson; Scot R. Kimball

The mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1) pathway integrates signals generated by hormones and nutrients to control cell growth and metabolism. The activation state of mTORC1 is regulated by a variety of GTPases including Rheb and Rags. Recently, Rho1, the yeast ortholog of RhoA, was shown to interact directly with TORC1 and repress its activation state in yeast. Thus, the purpose of the present study was to test the hypothesis that the RhoA GTPase modulates signaling through mTORC1 in mammalian cells. In support of this hypothesis, exogenous overexpression of either wild type or constitutively active (ca)RhoA repressed mTORC1 signaling as assessed by phosphorylation of p70S6K1 (Thr389), 4E-BP1 (Ser65) and ULK1 (Ser757). Additionally, RhoA·GTP repressed phosphorylation of mTORC1-associated mTOR (Ser2481). The RhoA·GTP mediated repression of mTORC1 signaling occurred independent of insulin or leucine induced stimulation. In contrast to the action of Rho1 in yeast, no evidence was found to support a direct interaction of RhoA·GTP with mTORC1. Instead, expression of caRheb, but not caRags, was able to rescue the RhoA·GTP mediated repression of mTORC1 suggesting RhoA functions upstream of Rheb to repress mTORC1 activity. Consistent with this suggestion, RhoA·GTP repressed phosphorylation of TSC2 (Ser939), PRAS40 (Thr246), Akt (Ser473), and mTORC2-associated mTOR (Ser2481). Overall, the results support a model in which RhoA·GTP represses mTORC1 signaling upstream of Akt and mTORC2.


Journal of Nutrition | 2015

Nutrient-Induced Stimulation of Protein Synthesis in Mouse Skeletal Muscle Is Limited by the mTORC1 Repressor REDD1

Bradley S. Gordon; David L. Williamson; Charles H. Lang; Leonard S. Jefferson; Scot R. Kimball

BACKGROUND In skeletal muscle, the nutrient-induced stimulation of protein synthesis requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Expression of the repressor of mTORC1 signaling, regulated in development and DNA damage 1 (REDD1), is elevated in muscle during various atrophic conditions and diminished under hypertrophic conditions. The question arises as to what extent REDD1 limits the nutrient-induced stimulation of protein synthesis. OBJECTIVE The objective was to examine the role of REDD1 in limiting the response of muscle protein synthesis and mTORC1 signaling to a nutrient stimulus. METHODS Wild type REDD1 gene (REDD1(+/+)) and disruption in the REDD1 gene (REDD1(-/-)) mice were feed deprived for 16 h and randomized to remain feed deprived or refed for 15 or 60 min. The tibialis anterior was then removed for analysis of protein synthesis and mTORC1 signaling. RESULTS In feed-deprived mice, protein synthesis and mTORC1 signaling were significantly lower in REDD1(+/+) than in REDD1(-/-) mice. Thirty minutes after the start of refeeding, protein synthesis in REDD1(+/+) mice was stimulated by 28%, reaching a value similar to that observed in feed-deprived REDD1(-/-) mice, and was accompanied by increased phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) by 81%, 167%, and 207%, respectively. In refed REDD1(-/-) mice, phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) were significantly augmented above the values observed in refed REDD1(+/+) mice by 258%, 405%, and 401%, respectively, although protein synthesis was not coordinately increased. Seventy-five minutes after refeeding, REDD1 expression in REDD1(+/+) mice was reduced (∼15% of feed-deprived REDD1(+/+) values), and protein synthesis and mTORC1 signaling were not different between refed REDD1(+/+) mice and REDD1(-/-) mice. CONCLUSIONS The results show that REDD1 expression limits protein synthesis in mouse skeletal muscle by inhibiting mTORC1 signaling during periods of feed deprivation and that a reduction in its expression is necessary for maximal stimulation of protein synthesis in response to refeeding.


American Journal of Physiology-endocrinology and Metabolism | 2014

Reduced REDD1 expression contributes to activation of mTORC1 following electrically induced muscle contraction

Bradley S. Gordon; Jennifer L. Steiner; Charles H. Lang; Leonard S. Jefferson; Scot R. Kimball

Regulated in DNA damage and development 1 (REDD1) is a repressor of mTOR complex 1 (mTORC1) signaling. In humans, REDD1 mRNA expression in skeletal muscle is repressed following resistance exercise in association with activation of mTORC1. However, whether REDD1 protein expression is also reduced after exercise and if so to what extent the loss contributes to exercise-induced activation of mTORC1 is unknown. Thus, the purpose of the present study was to examine the role of REDD1 in governing the response of mTORC1 and protein synthesis to a single bout of muscle contractions. Eccentric contractions of the tibialis anterior were elicited via electrical stimulation of the sciatic nerve in male mice in either the fasted or fed state or in fasted wild-type or REDD1-null mice. Four hours postcontractions, mTORC1 signaling and protein synthesis were elevated in fasted mice in association with repressed REDD1 expression relative to nonstimulated controls. Feeding coupled with contractions further elevated mTORC1 signaling, whereas REDD1 protein expression was repressed compared with either feeding or contractions alone. Basal mTORC1 signaling and protein synthesis were elevated in REDD1-null compared with wild-type mice. The magnitude of the increase in mTORC1 signaling was similar in both wild-type and REDD1-null mice, but, unlike wild-type mice, muscle contractions did not stimulate protein synthesis in mice deficient for REDD1, presumably because basal rates were already elevated. Overall, the data demonstrate that REDD1 expression contributes to the modulation of mTORC1 signaling following feeding- and contraction-induced activation of the pathway.


Physiological Reports | 2015

Moderate alcohol consumption does not impair overload‐induced muscle hypertrophy and protein synthesis

Jennifer L. Steiner; Bradley S. Gordon; Charles H. Lang

Chronic alcohol consumption leads to muscle weakness and atrophy in part by suppressing protein synthesis and mTORC1‐mediated signaling. However, it is unknown whether moderate alcohol consumption also prevents overload‐induced muscle growth and related anabolic signaling. Hypertrophy of the plantaris muscle was induced by removal of a section of the gastrocnemius and soleus muscles from one leg of C57BL/6 adult male mice while the contralateral leg remained intact as the sham control. A nutritionally complete alcohol‐containing liquid diet (EtOH) or isocaloric, alcohol‐free liquid diet (Con) was provided for 14 days post‐surgery. EtOH intake was increased progressively (day 1–5) before being maintained at ~20 g/day/kg BW. The plantaris muscle from the sham and OL leg was removed after 14 days at which time there was no difference in body weight between Con and EtOH‐fed mice. OL increased muscle weight (90%) and protein synthesis (125%) in both Con and EtOH mice. The overload‐induced increase in mTOR (Ser2448), 4E‐BP1 (Thr37/46), S6K1 (Thr389), rpS6 (Ser240/244), and eEF2 (Thr56) were comparable in muscle from Con and EtOH mice. Modulation of signaling upstream of mTORC1 including REDD1 protein expression, Akt (Thr308), PRAS40 (Thr246), and ERK (Thr202/Tyr204) also did not differ between Con and EtOH mice. Markers of autophagy (ULK1, p62, and LC3) suggested inhibition of autophagy with overload and activation with alcohol feeding. These data show that moderate alcohol consumption does not impair muscle growth, and therefore imply that resistance exercise may be an effective therapeutic modality for alcoholic‐related muscle disease.


Cellular Signalling | 2016

Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation

Scot R. Kimball; Bradley S. Gordon; Jenna E. Moyer; Michael D. Dennis; Leonard S. Jefferson

The studies described herein were designed to explore the role of Sestrin2 in mediating the selective action of leucine to activate mTORC1. The results demonstrate that Sestrin2 is a phosphoprotein and that its phosphorylation state is responsive to the availability of leucine, but not other essential amino acids. Moreover, leucine availability-induced alterations in Sestrin2 phosphorylation correlated temporally and dose dependently with the activation state of mTORC1, there being a reciprocal relationship between the degree of phosphorylation of Sestrin2 and the extent of repression of mTORC1. With leucine deprivation, Sestrin2 became more highly phosphorylated and interacted more strongly with proteins of the GATOR2 complex. Notably, in cells lacking the protein kinase ULK1, the activation state of mTORC1 was elevated in leucine-deficient medium, such that the effect of re-addition of the amino acid was blunted. In contrast, overexpression of ULK1 led to hyperphosphorylation of Sestrin2 and enhanced its interaction with GATOR2. Neither rapamycin nor Torin2 had any effect on Sestrin2 phosphorylation, suggesting that leucine deprivation-induced repression of mTORC1 was not responsible for the action of ULK1 on Sestrin2. Mass spectrometry analysis of Sestrin2 revealed three phosphorylation sites that are conserved across mammalian species. Mutation of the three sites to phospho-mimetic amino acids in exogenously expressed Sestrin2 promoted its interaction with GATOR2 and dramatically repressed mTORC1 even in the presence of leucine. Overall, the results support a model in which leucine selectively promotes dephosphorylation of Sestrin2, causing it to dissociate from and thereby activate GATOR2, leading to activation of mTORC1.


American Journal of Physiology-endocrinology and Metabolism | 2014

mTORC1 and JNK coordinate phosphorylation of the p70S6K1 autoinhibitory domain in skeletal muscle following functional overloading

Tony D. Martin; Michael D. Dennis; Bradley S. Gordon; Scot R. Kimball; Leonard S. Jefferson

The present project was designed to investigate phosphorylation of p70S6K1 in an animal model of skeletal muscle overload. Within 24 h of male Sprague-Dawley rats undergoing unilateral tenotomy to induce functional overloading of the plantaris muscle, phosphorylation of the Thr³⁸⁹ and Thr⁴²¹/Ser⁴²⁴ sites on p70S6K1 was significantly elevated. Since the Thr⁴²¹/Ser⁴²⁴ sites are purportedly mammalian target of rapamycin complex 1 (mTORC1) independent, we sought to identify the kinase(s) responsible for their phosphorylation. Initially, we used IGF-I treatment of serum-deprived HEK-293E cells as an in vitro model system, because IGF-I promotes phosphorylation of p70S6K1 on both the Thr³⁸⁹ and Thr⁴²¹/Ser⁴²⁴ sites in skeletal muscle and in cells in culture. We found that, whereas the mTOR inhibitor TORIN2 prevented the IGF-I-induced phosphorylation of the Thr⁴²¹/Ser⁴²⁴ sites, it surprisingly enhanced phosphorylation of these sites during serum deprivation. JNK inhibition with SP600125 attenuated phosphorylation of the Thr⁴²¹/Ser⁴²⁴ sites, and in combination with TORIN2 both the effect of IGF-I and the enhanced Thr⁴²¹/Ser⁴²⁴ phosphorylation during serum deprivation were ablated. In contrast, both JNK activation with anisomycin and knockdown of the mTORC2 subunit rictor specifically stimulated phosphorylation of the Thr⁴²¹/Ser⁴²⁴ sites, suggesting that mTORC2 represses JNK-mediated phosphorylation of these sites. The role of JNK in mediating p70S6K1 phosphorylation was confirmed in the animal model noted above, where rats treated with SP600125 exhibited attenuated Thr⁴²¹/Ser⁴²⁴ phosphorylation. Overall, the results provide evidence that the mTORC1 and JNK signaling pathways coordinate the site-specific phosphorylation of p70S6K1. They also identify a novel role for mTORC1 and mTORC2 in the inhibition of JNK.


American Journal of Physiology-endocrinology and Metabolism | 2016

Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism

Bradley S. Gordon; Jennifer L. Steiner; David L. Williamson; Charles H. Lang; Scot R. Kimball

Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.


Journal of Nutrition | 2015

Amino Acid–Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet

Scot R. Kimball; Suhana Ravi; Bradley S. Gordon; Michael D. Dennis; Leonard S. Jefferson

Abstract Background: The chronic activation of the mechanistic (mammalian) target of rapamycin in complex 1 (mTORC1) in response to excess nutrients contributes to obesity-associated pathologies. Objective: To understand the initial events that ultimately lead to obesity-associated pathologies, the present study assessed mTORC1 responses in the liver after a relatively short exposure to a high-fat diet (HFD). Methods: Male, obesity-prone rats were meal-trained to consume either a control (CON; 10% of energy from fat) diet or an HFD (60% of energy from fat) for 2 wk. Livers were collected and analyzed for mTORC1 signaling [assessed by changes in phosphorylation of 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1)] and potential regulatory mechanisms, including changes in the association of Ras-related GTP binding (Rag) A and RagC with mechanistic target of rapamycin (mTOR) and expression of Sestrin1, Sestrin2, and Sestrin3. Results: Feeding-induced activation of mTORC1 was blunted in the livers of rats fed the HFD compared with those fed the CON diet (p70S6K1 phosphorylation, 19% of CON; 4E-BP1 phosphorylation, 61% of CON). The attenuated response was not due to a change in a kinase also referred to as protein kinase B (Akt) signaling but rather to resistance to amino acid–induced activation of mTORC1, as evidenced by a reduction in the interaction of RagA (69% of CON) and RagC (66% of CON) with mTOR and enhanced expression of the mTORC1 repressors Sestrin2 (132% of CON) and Sestrin3 (143% of CON). The consumption of an HFD led to impaired amino acid–induced activation of mTORC1 as assessed in livers perfused in situ with medium containing various concentrations of amino acids. Conclusions: These results in rats support a model in which the initial response of the liver to an HFD is an attenuation of, rather than the expected activation of, mTORC1. The initial response likely represents a counterregulatory mechanism to handle the onset of excess nutrients and is caused by enhanced expression of Sestrin2 and Sestrin3, which, in turn, leads to impaired Rag signaling, resulting in resistance to amino acid–induced activation of mTORC1.


Molecular and Cellular Endocrinology | 2017

Androgen-mediated regulation of skeletal muscle protein balance

Michael L. Rossetti; Jennifer L. Steiner; Bradley S. Gordon

Androgens significantly alter muscle mass in part by shifting protein balance in favor of net protein accretion. During various atrophic conditions, the clinical impact of decreased production or bioavailability of androgens (termed hypogonadism) is important as a loss of muscle mass is intimately linked with survival outcome. While androgen replacement therapy increases muscle mass in part by restoring protein balance, this is not a comprehensive treatment option due to potential side effects. Therefore, an understanding of the mechanisms by which androgens alter protein balance is needed for the development of androgen-independent therapies. While the data in humans suggest androgens alter protein balance (both synthesis and breakdown) in the fasted metabolic state, a predominant molecular mechanism(s) behind this observation is still lacking. This failure is likely due in part to inconsistent experimental design between studies including failure to control nutrient/feeding status, the method of altering androgens, and the model systems utilized.

Collaboration


Dive into the Bradley S. Gordon's collaboration.

Top Co-Authors

Avatar

Scot R. Kimball

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Leonard S. Jefferson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Michael D. Dennis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Steiner

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Charles H. Lang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Andrew R. Kelleher

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Kostek

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Michael L. Rossetti

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge