Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scot R. Kimball is active.

Publication


Featured researches published by Scot R. Kimball.


Diabetes | 2006

Diabetic Retinopathy Seeing Beyond Glucose-Induced Microvascular Disease

David A. Antonetti; Alistair J. Barber; Sarah K. Bronson; Willard M. Freeman; Thomas W. Gardner; Leonard S. Jefferson; Mark Kester; Scot R. Kimball; J. Kyle Krady; Kathryn F. LaNoue; Christopher C. Norbury; Patrick G. Quinn; Lakshman Sandirasegarane; Ian A. Simpson

Diabetic retinopathy remains a frightening prospect to patients and frustrates physicians. Destruction of damaged retina by photocoagulation remains the primary treatment nearly 50 years after its introduction. The diabetes pandemic requires new approaches to understand the pathophysiology and improve the detection, prevention, and treatment of retinopathy. This perspective considers how the unique anatomy and physiology of the retina may predispose it to the metabolic stresses of diabetes. The roles of neural retinal alterations and impaired retinal insulin action in the pathogenesis of early retinopathy and the mechanisms of vision loss are emphasized. Potential means to overcome limitations of current animal models and diagnostic testing are also presented with the goal of accelerating therapies to manage retinopathy in the face of ongoing diabetes.


Molecular and Cellular Biology | 1999

Phosphorylation of the Cap-Binding Protein Eukaryotic Translation Initiation Factor 4E by Protein Kinase Mnk1 In Vivo

Andrew J. Waskiewicz; Jeffrey C. Johnson; Bennett H. Penn; Malathy Mahalingam; Scot R. Kimball; Jonathan A. Cooper

ABSTRACT Eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA 5′ cap and brings the mRNA into a complex with other protein synthesis initiation factors and ribosomes. The activity of mammalian eIF4E is important for the translation of capped mRNAs and is thought to be regulated by two mechanisms. First, eIF4E is sequestered by binding proteins, such as 4EBP1, in quiescent cells. Mitogens induce the release of eIF4E by stimulating the phosphorylation of 4EBP1. Second, mitogens and stresses induce the phosphorylation of eIF4E at Ser 209, increasing the affinity of eIF4E for capped mRNA and for an associated scaffolding protein, eIF4G. We previously showed that a mitogen- and stress-activated kinase, Mnk1, phosphorylates eIF4E in vitro at the physiological site. Here we show that Mnk1 regulates eIF4E phosphorylation in vivo. Mnk1 binds directly to eIF4G and copurifies with eIF4G and eIF4E. We identified activating phosphorylation sites in Mnk1 and developed dominant-negative and activated mutants. Expression of dominant-negative Mnk1 reduces mitogen-induced eIF4E phosphorylation, while expression of activated Mnk1 increases basal eIF4E phosphorylation. Activated mutant Mnk1 also induces extensive phosphorylation of eIF4E in cells overexpressing 4EBP1. This suggests that phosphorylation of eIF4E is catalyzed by Mnk1 or a very similar kinase in cells and is independent of other mitogenic signals that release eIF4E from 4EBP1.


Journal of Nutrition | 2006

Signaling Pathways and Molecular Mechanisms through which Branched-Chain Amino Acids Mediate Translational Control of Protein Synthesis

Scot R. Kimball; Leonard S. Jefferson

BCAAs stimulate protein synthesis in in vitro preparations of skeletal muscle. Likewise, the stimulation of protein synthesis in skeletal muscle produced by intake of a mixed meal is due largely to BCAAs. Of the three BCAAs, leucine is the one primarily responsible for the stimulation of protein synthesis under these circumstances. The stimulatory effect of leucine on protein synthesis is mediated through upregulation of the initiation of mRNA translation. A number of mechanisms, including phosphorylation of ribosomal protein S6 Kinase, eukaryotic initiation factor (eIF)4E binding protein-1, and eIF4G, contribute to the effect of leucine on translation initiation. These mechanisms not only promote global translation of mRNA but also contribute to processes that mediate discrimination in the selection of mRNA for translation. A key component in a signaling pathway controlling these phosphorylation-induced mechanisms is the protein kinase, termed the mammalian target of rapamycin (mTOR). The activity of mTOR toward downstream targets is controlled in part through its interaction with the regulatory-associated protein of mTOR (known as raptor) and the G protein beta-subunit-like protein. Signaling through mTOR is also controlled by upstream members of the pathway such as the Ras homolog enriched in brain (Rheb), a GTPase that activates mTOR, and tuberin (also known as TSC2), a GTPase-activating protein, which, with its binding partner hamartin (also known as TSC1), acts to repress mTOR. Candidates for mediating the action of leucine to stimulate signaling through the mTOR pathway include TSC2, Rheb, and raptor. The current state of our understanding of how leucine acts on these signaling pathways and molecular mechanisms to stimulate protein synthesis in skeletal muscle is summarized in this article.


Journal of Biological Chemistry | 1999

Leucine Regulates Translation of Specific mRNAs in L6 Myoblasts through mTOR-mediated Changes in Availability of eIF4E and Phosphorylation of Ribosomal Protein S6

Scot R. Kimball; Lisa M. Shantz; Rick L. Horetsky; Leonard S. Jefferson

Regulation of translation of mRNAs coding for specific proteins plays an important role in controlling cell growth, differentiation, and transformation. Two proteins have been implicated in the regulation of specific mRNA translation: eukaryotic initiation factor eIF4E and ribosomal protein S6. Increased phosphorylation of eIF4E as well as its overexpression are associated with stimulation of translation of mRNAs with highly structured 5′-untranslated regions. Similarly, phosphorylation of S6 results in preferential translation of mRNAs containing an oligopyrimidine tract at the 5′-end of the message. In the present study, leucine stimulated phosphorylation of the eIF4E-binding protein, 4E-BP1, in L6 myoblasts, resulting in dissociation of eIF4E from the inactive eIF4E·4E-BP1 complex. The increased availability of eIF4E was associated with a 1.6-fold elevation in ornithine decarboxylase relative to global protein synthesis. Leucine also stimulated phosphorylation of the ribosomal protein S6 kinase, p70S6k, resulting in increased phosphorylation of S6. Hyperphosphorylation of S6 was associated with a 4-fold increase in synthesis of elongation factor eEF1A. Rapamycin, an inhibitor of the protein kinase mTOR, prevented all of the leucine-induced effects. Thus, leucine acting through an mTOR-dependent pathway stimulates the translation of specific mRNAs both by increasing the availability of eIF4E and by stimulating phosphorylation of S6.


Molecular and Cellular Biology | 2002

The GCN2 eIF2α Kinase Is Required for Adaptation to Amino Acid Deprivation in Mice

Peichuan Zhang; Barbara C. McGrath; Jamie Reinert; DeAnne S. Olsen; Li Lei; Sangeeta Gill; Sheree A. Wek; Krishna M. Vattem; Ronald C. Wek; Scot R. Kimball; Leonard S. Jefferson; Douglas R. Cavener

ABSTRACT The GCN2 eIF2α kinase is essential for activation of the general amino acid control pathway in yeast when one or more amino acids become limiting for growth. GCN2s function in mammals is unknown, but must differ, since mammals, unlike yeast, can synthesize only half of the standard 20 amino acids. To investigate the function of mammalian GCN2, we have generated a Gcn2 −/− knockout strain of mice. Gcn2 −/− mice are viable, fertile, and exhibit no phenotypic abnormalities under standard growth conditions. However, prenatal and neonatal mortalities are significantly increased in Gcn2 −/− mice whose mothers were reared on leucine-, tryptophan-, or glycine-deficient diets during gestation. Leucine deprivation produced the most pronounced effect, with a 63% reduction in the expected number of viable neonatal mice. Cultured embryonic stem cells derived from Gcn2 −/− mice failed to show the normal induction of eIF2α phosphorylation in cells deprived of leucine. To assess the biochemical effects of the loss of GCN2 in the whole animal, liver perfusion experiments were conducted. Histidine limitation in the presence of histidinol induced a twofold increase in the phosphorylation of eIF2α and a concomitant reduction in eIF2B activity in perfused livers from wild-type mice, but no changes in livers from Gcn2 −/− mice.


The International Journal of Biochemistry & Cell Biology | 1999

Eukaryotic initiation factor eIF2.

Scot R. Kimball

eIF2 plays a central role in the maintenance of what is generally considered a rate-limiting step in mRNA translation. In this step, eIF2 binds GTP and Met-tRNAi and transfers Met-tRNAi to the 40S ribosomal subunit. At the end of the initiation process, GTP bound to eIF2 is hydrolyzed to GDP and the eIF2.GDP complex is released from the ribosome. The exchange of GDP bound to eIF2 for GTP is a prerequisite to binding Met-tRNAi and is mediated by a second initiation factor, eIF2B. In what is probably the best-characterized mechanism for the regulation of mRNA translation, phosphorylation of eIF2 on its smallest, or alpha-, subunit converts eIF2 from a substrate of eIF2B into a competitive inhibitor. Thus, phosphorylation of eIF2 alpha effectively prevents formation of the eIF2.GTP.Met-tRNAi complex and inhibits global protein synthesis. Phosphorylation of eIF2 alpha occurs under a variety of conditions including viral infection, apoptosis, nutrient deprivation, heme-deprivation, and certain stresses.


Journal of Biological Chemistry | 2006

Dexamethasone Represses Signaling through the Mammalian Target of Rapamycin in Muscle Cells by Enhancing Expression of REDD1

Hongmei Wang; Neil Kubica; Leif W. Ellisen; Leonard S. Jefferson; Scot R. Kimball

The mammalian target of rapamycin (mTOR), a critical modulator of cell growth, acts to integrate signals from hormones, nutrients, and growth-promoting stimuli to downstream effector mechanisms involved in the regulation of protein synthesis. Dexamethasone, a synthetic glucocorticoid that represses protein synthesis, acts to inhibit mTOR signaling as assessed by reduced phosphorylation of the downstream targets S6K1 and 4E-BP1. Dexamethasone has also been shown in one study to up-regulate the expression of REDD1 (also referred to RTP801, a novel stress-induced gene linked to repression of mTOR signaling) in lymphoid, but not nonlymphoid, cells. In contrast to the findings of that study, here we demonstrate that REDD1, but not REDD2, mRNA expression is dramatically induced following acute dexamethasone treatment both in rat skeletal muscle in vivo and in L6 myoblasts in culture. In L6 myoblasts, the effect of the drug on mTOR signaling is efficiently blunted in the presence of REDD1 RNA interference oligonucleotides. Moreover, the dexamethasone-induced assembly of the mTOR regulatory complex Tuberin·Hamartin is disrupted in L6 myoblasts following small interfering RNA-mediated repression of REDD1 expression. Finally, overexpression of Rheb, a downstream target of Tuberin function and a positive upstream effector of mTOR, reverses the effect of dexamethasone on phosphorylation of mTOR substrates. Overall, the data support the conclusion that REDD1 functions upstream of Tuberin and Rheb to down-regulate mTOR signaling in response to dexamethasone.


The Journal of Physiology | 2003

Immediate Response of Mammalian Target of Rapamycin (mTOR)‐Mediated Signalling Following Acute Resistance Exercise in Rat Skeletal Muscle

Douglas R. Bolster; Neil Kubica; Stephen J. Crozier; David L. Williamson; Peter A. Farrell; Scot R. Kimball; Leonard S. Jefferson

The purpose of the present investigation was to determine whether mammalian target of rapamycin (mTOR)‐mediated signalling and some key regulatory proteins of translation initiation are altered in skeletal muscle during the immediate phase of recovery following acute resistance exercise. Rats were operantly conditioned to reach an illuminated bar located high on a Plexiglass cage, such that the animals completed concentric and eccentric contractions involving the hindlimb musculature. Gastrocnemius muscle was extracted immediately after acute exercise and 5, 10, 15, 30 and 60 min of recovery. Phosphorylation of protein kinase B (PKB) on Ser‐473 peaked at 10 min of recovery (282 % of control, P < 0.05) with no significant changes noted for mTOR phosphorylation on Ser‐2448. Eukaryotic initiation factor (eIF) 4E‐binding protein‐1 (4E‐BP1) and S6 kinase‐1 (S6K1), both downstream effectors of mTOR, were altered during recovery as well. 4E‐BP1 phosphorylation was significantly elevated at 10 min (292 %, P < 0.01) of recovery. S6K1 phosphorylation on Thr‐389 demonstrated a trend for peak activation at 10 min following exercise (336 %, P= 0.06) with ribosomal protein S6 phosphorylation being maximally activated at 15 min of recovery (647 %, P < 0.05). Components of the eIF4F complex were enhanced during recovery as eIF4E association with eIF4G peaked at 10 min (292 %, P < 0.05). Events regulating the binding of initiator methionyl‐tRNA to the 40S ribosomal subunit were assessed through eIF2B activity and eIF2α phosphorylation on Ser‐51. No differences were noted with either eIF2B or eIF2α. Collectively, these results provide strong evidence that mTOR‐mediating signalling is transiently upregulated during the immediate period following resistance exercise and this response may constitute the most proximal growth response of the cell.


Proceedings of the Nutrition Society | 2004

Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling

Douglas R. Bolster; Leonard S. Jefferson; Scot R. Kimball

Although insulin, amino acids and exercise individually activate multiple signal transduction pathways in skeletal muscle, one pathway, the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signalling pathway, is a target of all three. Activation of the PI3K-mTOR signal transduction pathway results in both acute (i.e. occurring in minutes to hours) and long-term (i.e. occurring in hours to days) up-regulation of protein synthesis through modulation of multiple steps involved in mediating the initiation of mRNA translation and ribosome biogenesis respectively. In addition, changes in gene expression through altered patterns of mRNA translation promote cell growth, which in turn promotes muscle hypertrophy. The focus of the present discussion is to review current knowledge concerning the mechanism(s) through which insulin, amino acids and resistance exercise act to activate the PI3K-mTOR signal transduction pathway and thereby enhance the rate of protein synthesis in muscle.


American Journal of Physiology-cell Physiology | 1998

Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise

T. A. Gautsch; J. C. Anthony; Scot R. Kimball; G. L. Paul; Donald K. Layman; Leonard S. Jefferson

We examined the association of the mRNA cap binding protein eIF4E with the translational inhibitor 4E-BP1 in the acute modulation of skeletal muscle protein synthesis during recovery from exercise. Fasting male rats were run on a treadmill for 2 h at 26 m/min and were realimented immediately after exercise with either saline, a carbohydrate-only meal, or a nutritionally complete meal (54.5% carbohydrate, 14% protein, and 31.5% fat). Exercised animals and nonexercised controls were studied 1 h postexercise. Muscle protein synthesis decreased 26% after exercise and was associated with a fourfold increase in the amount of eIF4E present in the inactive eIF4E ⋅ 4E-BP1 complex and a concomitant 71% decrease in the association of eIF4E with eIF4G. Refeeding the complete meal, but not the carbohydrate meal, increased muscle protein synthesis equal to controls, despite similar plasma concentrations of insulin. Additionally, eIF4E ⋅ 4E-BP1 association was inversely related and eIF4E ⋅ eIF4G association was positively correlated to muscle protein synthesis. This study demonstrates that recovery of muscle protein synthesis after exercise is related to the availability of eIF4E for 48S ribosomal complex formation, and postexercise meal composition influences recovery via modulation of translation initiation.We examined the association of the mRNA cap binding protein eIF4E with the translational inhibitor 4E-BP1 in the acute modulation of skeletal muscle protein synthesis during recovery from exercise. Fasting male rats were run on a treadmill for 2 h at 26 m/min and were realimented immediately after exercise with either saline, a carbohydrate-only meal, or a nutritionally complete meal (54.5% carbohydrate, 14% protein, and 31.5% fat). Exercised animals and nonexercised controls were studied 1 h postexercise. Muscle protein synthesis decreased 26% after exercise and was associated with a fourfold increase in the amount of eIF4E present in the inactive eIF4E.4E-BP1 complex and a concomitant 71% decrease in the association of eIF4E with eIF4G. Refeeding the complete meal, but not the carbohydrate meal, increased muscle protein synthesis equal to controls, despite similar plasma concentrations of insulin. Additionally, eIF4E.4E-BP1 association was inversely related and eIF4E.eIF4G association was positively correlated to muscle protein synthesis. This study demonstrates that recovery of muscle protein synthesis after exercise is related to the availability of eIF4E for 48S ribosomal complex formation, and postexercise meal composition influences recovery via modulation of translation initiation.

Collaboration


Dive into the Scot R. Kimball's collaboration.

Top Co-Authors

Avatar

Leonard S. Jefferson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Vary

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Teresa A. Davis

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Agus Suryawan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hanh V. Nguyen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Charles H. Lang

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael D. Dennis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Bradley S. Gordon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Peter A. Farrell

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Joshua C. Anthony

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge