Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Braid A. MacRae is active.

Publication


Featured researches published by Braid A. MacRae.


Sports Medicine | 2011

Compression Garments and Exercise

Braid A. MacRae; James D. Cotter; Raechel M. Laing

Compression garments (CGs) provide a means of applying mechanical pressure at the body surface, thereby compressing and perhaps stabilizing/ supporting underlying tissue. The body segments compressed and applied pressures ostensibly reflect the purpose of the garment, which is to mitigate exercise-induced discomfort or aid aspects of current or subsequent exercise performance. Potential benefits may be mediated via physical, physiological or psychological effects, although underlying mechanisms are typically not well elucidated. Despite widespread acceptance of CGs by competitive and recreational athletes, convincing scientific evidence supporting ergogenic effects remains somewhat elusive. The literature is fragmented due to great heterogeneity among studies, with variability including the type, duration and intensity of exercise, the measures used as indicators of exercise or recovery performance/physiological function, training status of participants, when the garments were worn and for what duration, the type of garment/ body area covered and the applied pressures. Little is known about the adequacy of current sizing systems, pressure variability within and among individuals, maintenance of applied pressures during one wear session or over the life of the garment and, perhaps most importantly, whether any of these actually influence potential compression-associated benefits.During exercise, relatively few ergogenic effects have been demonstrated when wearing CGs. While CGs appear to aid aspects of jump performance in some situations, only limited data are available to indicate positive effects on performance for other forms of exercise. There is some indication for physical and physiological effects, including attenuation of muscle oscillation, improved joint awareness, perfusion augmentation and altered oxygen usage at sub-maximal intensities, but such findings are relatively isolated. Sub-maximal (at matched work loads) and maximal heart rate appears unaffected by CGs. Positive influences on perceptual responses during exercise are limited.During recovery, CGs have had mixed effects on recovery kinetics or subsequent performance. Various power and torque measurements have, on occasions, benefitted from the use of CGs in recovery, but subsequent sprint and agility performance appears no better. Results are inconsistent for post-exercise swelling of limb segments and for clearance of myocellular proteins and metabolites, while effects on plasma concentrations are difficult to interpret. However, there is some evidence for local blood flow augmentation with compression. Ratings of post-exercise muscle soreness are commonly more favourable when CGs are worn, although this is not always so. In general, the effects of CGs on indicators of recovery performance remain inconclusive. More work is needed to form a consensus or mechanistically-insightful interpretation of any demonstrated effects of CGs during exercise, recovery or — perhaps most importantly — fitness development. Limited practical recommendations for athletes can be drawn from the literature at present, although this review may help focus future research towards a position where such recommendations can be made.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Assessment of cerebral autoregulation: the quandary of quantification.

Yu-Chieh Tzeng; Philip N. Ainslie; William H. Cooke; Karen C. Peebles; Christopher K. Willie; Braid A. MacRae; Jonathan D. Smirl; Helen M. Horsman; Caroline A. Rickards

We assessed the convergent validity of commonly applied metrics of cerebral autoregulation (CA) to determine the extent to which the metrics can be used interchangeably. To examine between-subject relationships among low-frequency (LF; 0.07-0.2 Hz) and very-low-frequency (VLF; 0.02-0.07 Hz) transfer function coherence, phase, gain, and normalized gain, we performed retrospective transfer function analysis on spontaneous blood pressure and middle cerebral artery blood velocity recordings from 105 individuals. We characterized the relationships (n = 29) among spontaneous transfer function metrics and the rate of regulation index and autoregulatory index derived from bilateral thigh-cuff deflation tests. In addition, we analyzed data from subjects (n = 29) who underwent a repeated squat-to-stand protocol to determine the relationships between transfer function metrics during forced blood pressure fluctuations. Finally, data from subjects (n = 16) who underwent step changes in end-tidal P(CO2) (P(ET)(CO2) were analyzed to determine whether transfer function metrics could reliably track the modulation of CA within individuals. CA metrics were generally unrelated or showed only weak to moderate correlations. Changes in P(ET)(CO2) were positively related to coherence [LF: β = 0.0065 arbitrary units (AU)/mmHg and VLF: β = 0.011 AU/mmHg, both P < 0.01] and inversely related to phase (LF: β = -0.026 rad/mmHg and VLF: β = -0.018 rad/mmHg, both P < 0.01) and normalized gain (LF: β = -0.042%/mmHg(2) and VLF: β = -0.013%/mmHg(2), both P < 0.01). However, Pet(CO(2)) was positively associated with gain (LF: β = 0.0070 cm·s(-1)·mmHg(-2), P < 0.05; and VLF: β = 0.014 cm·s(-1)·mmHg(-2), P < 0.01). Thus, during changes in P(ET)(CO2), LF phase was inversely related to LF gain (β = -0.29 cm·s(-1)·mmHg(-1)·rad(-1), P < 0.01) but positively related to LF normalized gain (β = 1.3% mmHg(-1)/rad, P < 0.01). These findings collectively suggest that only select CA metrics can be used interchangeably and that interpretation of these measures should be done cautiously.


Journal of Applied Physiology | 2012

Sympathetic regulation of the human cerebrovascular response to carbon dioxide

Karen C. Peebles; Ollie G. Ball; Braid A. MacRae; Helen M. Horsman; Yu-Chieh Tzeng

Although the cerebrovasculature is known to be exquisitely sensitive to CO(2), there is no consensus on whether the sympathetic nervous system plays a role in regulating cerebrovascular responses to changes in arterial CO(2). To address this question, we investigated human cerebrovascular CO(2) reactivity in healthy participants randomly assigned to the α(1)-adrenoreceptor blockade group (9 participants; oral prazosin, 0.05 mg/kg) or the placebo control (9 participants) group. We recorded mean arterial blood pressure (MAP), heart rate (HR), mean middle cerebral artery flow velocity (MCA(V mean)), and partial pressure of end-tidal CO(2) (Pet(CO(2))) during 5% CO(2) inhalation and voluntary hyperventilation. CO(2) reactivity was quantified as the slope of the linear relationship between breath-to-breath Pet(CO(2)) and the average MCAv(mean) within successive breathes after accounting for MAP as a covariate. Prazosin did not alter resting HR, Pet(CO(2)), MAP, or MCA(V mean). The reduction in hypocapnic CO(2) reactivity following prazosin (-0.48 ± 0.093 cm·s(-1) · mmHg(-1)) was greater compared with placebo (-0.19 ± 0.087 cm · s(-1) · mmHg(-1); P < 0.05 for interaction). In contrast, the change in hypercapnic CO(2) reactivity following prazosin (-0.23 cm · s(-1) · mmHg(-1)) was similar to placebo (-0.31 cm · s(-1) · mmHg(-1); P = 0.50 for interaction). These data indicate that the sympathetic nervous system contributes to CO(2) reactivity via α(1)-adrenoreceptors; blocking this pathway with prazosin reduces CO(2) reactivity to hypocapnia but not hypercapnia.


Journal of Applied Physiology | 2014

Fundamental relationships between blood pressure and cerebral blood flow in humans

Yu-Chieh Tzeng; Braid A. MacRae; Philip N. Ainslie; Gregory S. H. Chan

Cerebral blood flow responses to transient blood pressure challenges are frequently attributed to cerebral autoregulation (CA), yet accumulating evidence indicates vascular properties like compliance are also influential. We hypothesized that middle cerebral blood velocity (MCAv) dynamics during or following a transient blood pressure perturbation can be accurately explained by the windkessel mechanism. Eighteen volunteers underwent blood pressure manipulations, including bilateral thigh-cuff deflation and sit-to-stand maneuvers under normocapnic and hypercapnic (5% CO2) conditions. Pressure-flow recordings were analyzed using a windkessel analysis approach that partitions the frequency-dependent resistance and compliance contributions to MCAv dynamics. The windkessel was typically able to explain more than 50% of the MCAv variance, as indicated by R(2) values for both the flow recovery and postrecovery phase. The most consistent predictors of MCAv dynamics under the control condition were the windkessel capacitive gain and high-frequency resistive gain. However, there were significant interindividual variations in the composition of windkessel predictors. Hypercapnia consistently reduced the capacitive gain and enhanced the low-frequency (0.04-0.20 Hz) resistive gain for both thigh-cuff deflation and sit-to-stand trials. These findings indicate that 1) MCAv dynamics during acute transient hypotension challenges are dominated by cerebrovascular windkessel properties independent of CA; 2) there is significant heterogeneity in windkessel properties between individuals; and 3) hemodynamic effects of hypercapnia during transient blood pressure challenges primarily reflect changes in windkessel properties rather than pure CA impairment.


Textile Research Journal | 2011

Layering of fabrics in laboratory tests to reflect combinations as outdoor apparel

Raechel M. Laing; Braid A. MacRae; Cheryl A. Wilson; Brian Niven

The objective was to examine the effects of layering fabrics on selected properties known to be critical in the outdoor recreational activity market (permeability to air and to water vapor, and thermal-related measures including ’dry’ and ’wet’ thermal resistance). With laboratory-based testing used by manufacturers to aid fabric selection, information on the way in which fabrics behave as layered arrangements is pertinent.Comparisons of effects on fabric properties were based on fibers (merino wool, polyester), knit structures (single jersey, interlock, eyelet), and whether differences were apparent with multiple-layer arrangements typical of end use, including outer layers. Standard methods and modifications to these were applied. Some properties differed according to the spacing (distance) between layers and/or between a first layer and a hypothetical ’skin’ surface. Differences among the different fabrics/fibers were more apparent with one layer than with multiple layers. Layering of fabrics which are likely to be used as garments worn together has major effects on properties such as permeability to air and water vapor, thermal resistance, and nominal thermal conductance. Effects of adding a second layer typically exceeded those of adding a third.


Textile Research Journal | 2011

Importance of air spaces when comparing fabric thermal resistance

Braid A. MacRae; Raechel M. Laing; Cheryl A. Wilson

Comparing fabrics on the basis of properties determined in the laboratory can provide information valuable to manufacturers and users of fabrics and garments, although small changes to test methods seem to have the potential to yield data which is more relevant. Thermal resistance is the focus of a small experiment highlighting this conclusion.


Ergonomics | 2014

Layering garments during rest and exercise in the cold (8°C): wearer responses and comparability with selected fabric properties

Braid A. MacRae; Raechel M. Laing; Cheryl A. Wilson; Brian Niven

How garments contribute to performance of the clothing system during wear is of interest, as is understanding the value of using fabric properties to inform end-use characteristics. To investigate the influences of layering upper-body garments, four fabrics were used to construct two first-layer garments (wool and polyester) and two outer-layer garments (wool and membrane laminate). Over six sessions, 10 moderately trained males wore each first-layer garment as a single layer and in combination with each outer-layer garment while resting, running and walking in cold environmental conditions (8 ± 1°C, 81 ± 4% RH). Here, the type of garment arrangement worn (fabric type or number of layers) had little influence on heart rate, core body temperature and change in body mass. Weighted mean covered skin temperature was warmer and weighted mean next-to-skin vapour pressure was typically higher (following the onset of exercise) with two layers versus one. Differences among fabrics for individual properties were typically overstated compared to differences among corresponding garments for physiological and psychophysical variables under the conditions of this study. These findings inform the interpretation of particular fabric properties and highlight issues to be acknowledged during development/refinement of fabric test methods. Practitioner Summary: We examined the way in which selected fibre, fabric and garment (layering) characteristics contribute to performance of the clothing system during wear under cold conditions. Selected properties of the constituent fabrics were found to provide limited insight into how garments perform during wear under the conditions of this study.


Journal of Applied Physiology | 2013

Interindividual relationships between blood pressure and cerebral blood flow variability with intact and blunted cerebrovascular control

Yu-Chieh Tzeng; Braid A. MacRae

The relationships between blood pressure variability (BPV) and cerebral blood flow variability (CFV) across individuals in the presence of intact and blunted cerebrovascular control are poorly understood. This study sought to characterize the interindividual associations between spontaneous BPV and CFV under conditions of normal and blunted [calcium channel blockade (CCB)] cerebrovascular control in healthy humans. We analyzed blood pressure and flow velocity data from 12 subjects treated with CCB (60 mg oral nimodipine) and 11 subjects treated with a placebo pill. Spontaneously occurring fluctuations in mean arterial blood pressure (MAP) and middle cerebral artery flow velocity (MCAv(mean); transcranial Doppler) were characterized using power spectral and transfer function analysis in the very-low- (0.02-0.07 Hz), low- (0.07-0.20 Hz), and high-frequency (0.20-0.40 Hz) ranges. Across our study sample, MAP and MCAv(mean) power were positively correlated in all three frequency ranges, both before (R(2) = 0.34-0.67, all P < 0.01) and after CCB (R(2) = 0.53-0.61, all P < 0.02). Compared with placebo, CCB reduced very-low-frequency MAP (P < 0.05) and MCAv(mean) power (P < 0.01) and the low-frequency cross-spectral phase angle (P < 0.05). The magnitude of change in MAP and MCAv(mean) power with CCB (i.e., change scores) was positively related in the very-low-frequency range. Collectively, these findings indicate that CFV may be an explanatory factor in the association between elevated BPV and adverse cerebrovascular outcomes and support the possibility of using CCB to improve hemodynamic stability under resting conditions.


Hypertension | 2012

A Recipe for Reducing Blood Pressure Variability: Adding Blood Flow to the Mix

Yu-Chieh Tzeng; Braid A. MacRae; Caroline A. Rickards

To the Editor: An important medical advancement during the last 3 decades has been the development of accurate but noninvasive blood pressure monitoring devices. The successful application of such technology has lead to growing recognition that identifying elevated blood pressure variability (BPV) across a wide range of time scales may be useful in predicting poorer health outcomes. Thus, with great interest we read the article by Matsui et al1 showing that day-by-day BPV was lower in patients treated with an angiotensin II receptor blocker/calcium channel blocker combination compared with those treated with an angiotensin II receptor blocker/diuretic combination. This study raises the exciting possibility of potential methods for treating elevated BPV. In light of treatment possibilities, …


Frontiers in Physiology | 2018

Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values

Braid A. MacRae; Simon Annaheim; Christina M. Spengler; René M. Rossi

Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskin in vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaborations risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.

Collaboration


Dive into the Braid A. MacRae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip N. Ainslie

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Caroline A. Rickards

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge