Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bram Kuijper is active.

Publication


Featured researches published by Bram Kuijper.


Journal of Evolutionary Biology | 2006

The cost of mating rises nonlinearly with copulation frequency in a laboratory population of Drosophila melanogaster

Bram Kuijper; A. D. Stewart; William R. Rice

Previous studies of Drosophila melanogaster have demonstrated a cost to females from male courtship and mating, but two critically important parameters remain unresolved: (i) the degree to which harm from multiple‐mating reduces lifetime fitness and (ii) how harm from mating might change with successive matings (rematings). Here we use ‘laboratory island analysis’ to quantify the costs that females incur with each remating, in the currency of lifetime fitness and under conditions that closely match those to which the flies have adapted for hundreds of generations. We experimentally manipulated the number of female matings by varying the order of daily 2‐h exposures of females to either sperm‐less males (XO) or intact males (XY). Females that mated more often had substantially reduced lifetime fecundity, and importantly, the fitness cost from remating rapidly accelerated.


Evolution | 2015

When to rely on maternal effects and when on phenotypic plasticity

Bram Kuijper; Rebecca B. Hoyle

Existing insight suggests that maternal effects have a substantial impact on evolution, yet these predictions assume that maternal effects themselves are evolutionarily constant. Hence, it is poorly understood how natural selection shapes maternal effects in different ecological circumstances. To overcome this, the current study derives an evolutionary model of maternal effects in a quantitative genetics context. In constant environments, we show that maternal effects evolve to slight negative values that result in a reduction of the phenotypic variance (canalization). By contrast, in populations experiencing abrupt change, maternal effects transiently evolve to positive values for many generations, facilitating the transmission of beneficial maternal phenotypes to offspring. In periodically fluctuating environments, maternal effects evolve according to the autocorrelation between maternal and offspring environments, favoring positive maternal effects when change is slow, and negative maternal effects when change is rapid. Generally, the strongest maternal effects occur for traits that experience very strong selection and for which plasticity is severely constrained. By contrast, for traits experiencing weak selection, phenotypic plasticity enhances the evolutionary scope of maternal effects, although maternal effects attain much smaller values throughout. As weak selection is common, finding substantial maternal influences on offspring phenotypes may be more challenging than anticipated.


Biology Letters | 2012

Intralocus sexual conflict over human height

Gert Stulp; Bram Kuijper; Abraham P. Buunk; Thomas V. Pollet; Simon Verhulst

Intralocus sexual conflict (IASC) occurs when a trait under selection in one sex constrains the other sex from achieving its sex-specific fitness optimum. Selection pressures on body size often differ between the sexes across many species, including humans: among men individuals of average height enjoy the highest reproductive success, while shorter women have the highest reproductive success. Given its high heritability, IASC over human height is likely. Using data from sibling pairs from the Wisconsin Longitudinal Study, we present evidence for IASC over height: in shorter sibling pairs (relatively) more reproductive success (number of children) was obtained through the sister than through the brother of the sibling pair. By contrast, in average height sibling pairs most reproductive success was obtained through the brother relative to the sister. In conclusion, we show that IASC over a heritable, sexually dimorphic physical trait (human height) affects Darwinian fitness in a contemporary human population.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Sex-ratio control erodes sexual selection, revealing evolutionary feedback from adaptive plasticity.

Tim W. Fawcett; Bram Kuijper; Franz J. Weissing; Ido Pen

Female choice is a powerful selective force, driving the elaboration of conspicuous male ornaments. This process of sexual selection has profound implications for many life-history decisions, including sex allocation. For example, females with attractive partners should produce more sons, because these sons will inherit their fathers attractiveness and enjoy high mating success, thereby yielding greater fitness returns than daughters. However, previous research has overlooked the fact that there is a reciprocal feedback from life-history strategies to sexual selection. Here, using a simple mathematical model, we show that if mothers adaptively control offspring sex in relation to their partners attractiveness, sexual selection is weakened and male ornamentation declines. This weakening occurs because the ability to determine offspring sex reduces the fitness difference between females with attractive and unattractive partners. We use individual-based, evolutionary simulations to show that this result holds under more biologically realistic conditions. Sexual selection and sex allocation thus interact in a dynamic fashion: The evolution of conspicuous male ornaments favors sex-ratio adjustment, but this conditional strategy then undermines the very same process that generated it, eroding sexual selection. We predict that, all else being equal, the most elaborate sexual displays should be seen in species with little or no control over offspring sex. The feedback process we have described points to a more general evolutionary principle, in which a conditional strategy weakens directional selection on another trait by reducing fitness differences.


Evolutionary Applications | 2012

Sex determination meltdown upon biological control introduction of the parasitoid Cotesia rubecula

Jetske G. de Boer; Bram Kuijper; George E. Heimpel; Leo W. Beukeboom

Natural enemies may go through genetic bottlenecks during the process of biological control introductions. Such bottlenecks are expected to be particularly detrimental in parasitoid Hymenoptera that exhibit complementary sex determination (CSD). CSD is associated with a severe form of inbreeding depression because homozygosity at one or multiple sex loci leads to the production of diploid males that are typically unviable or sterile. We observed that diploid males occur at a relatively high rate (8–13% of diploid adults) in a field population of Cotesia rubecula in Minnesota, USA, where this parasitoid was introduced for biological control of the cabbage white Pieris rapae. However, our laboratory crosses suggest two‐locus CSD in a native Dutch population of C. rubecula and moderately high diploid males survival (approximately 70%), a scenario expected to produce low proportions of diploid males. We also show that courtship behavior of diploid males is similar to that of haploid males, but females mated to diploid males produce only very few daughters that are triploid. We use our laboratory data to estimate sex allele diversity in the field population of C. rubecula and discuss the possibility of a sex determination meltdown from two‐locus CSD to effective single‐locus CSD during or after introduction.


PLOS Computational Biology | 2014

The evolution of multivariate maternal effects.

Bram Kuijper; Rufus A. Johnstone; Stuart Townley

There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.


Fly | 2009

Direct observation of female mating frequency using time-lapse photography

Bram Kuijper; Edward H. Morrow

One basic condition of postmating sexual selection is that females mate more than once before fertilizing their ova. Knowledge of the frequency and extent of multiple mating in a given population or species is therefore important in order to fully understand the potential for sexual selection, in the form of sperm competition, sexual conflict and cryptic female choice. Surprisingly, there are only a handful of studies that have attempted to estimate the frequency of multiple mating in insects (including Drosophila) and none have made direct observations over extended periods of time. Here we use time-lapse photography to directly score matings in isolated pairs of D. melanogaster and show that multiple mating in the laboratory occurs at a high frequency but at comparable rates with wild caught females. We also find that the interval to remating rises approximately additively with each mating, indicating either an increase in female resistance or male reluctance to remate. These results suggest that the opportunity of postmating sexual selection in laboratory and natural environments are not dramatically different and that there may be a causal link between the rise in female mating resistance and the concomitant rise in the cost of mating. The method is easily executed and could be adapted to other insect models.


Journal of Evolutionary Biology | 2010

The evolution of haplodiploidy by male-killing endosymbionts: Importance of population structure and endosymbiont mutualisms

Bram Kuijper; Ido Pen

Haplodiploid inheritance systems, characterized by male transmission of only their maternally inherited genomic elements, have evolved more than 20 times within the animal kingdom. A number of theoretical studies have argued that infection with certain male‐killing endosymbionts can potentially lead to the evolution of haplodiploidy. By explicitly investigating the coevolutionary dynamics between host and endosymbiont, we show that the assumptions of current models cannot explain the evolution of haplodiploidy very well, as the endosymbiont will often go extinct in the long term. Here, we provide two additional mechanisms that can explain the stable evolution of haplodiploidy by male‐killing endosymbionts. First of all, a spatially structured population can facilitate the long‐term persistence of haplodiploidy, but this applies only when levels of inbreeding are very high. By contrast, endosymbionts that are mutualistic with their hosts provide a much more general and promising route to the stable evolution of haplodiploidy. This model is the first to provide a formal explanation of the supposed association between the evolution of haplodiploidy and the highly inbred lifestyles of some ancestors, while it also provides a hypothesis for the evolution of haplodiploidy in more outbred ancestors.


Journal of Evolutionary Biology | 2015

Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm

Bram Kuijper; N. Lane; Andrew Pomiankowski

A growing number of studies in multicellular organisms highlight low or moderate frequencies of paternal transmission of cytoplasmic organelles, including both mitochondria and chloroplasts. It is well established that strict maternal inheritance is selectively blind to cytoplasmic elements that are deleterious to males – ’mothers curse’. But it is not known how sensitive this conclusion is to slight levels of paternal cytoplasmic leakage. We assess the scope for polymorphism when individuals bear multiple cytoplasmic alleles in the presence of paternal leakage, bottlenecks and recurrent mutation. When fitness interactions among cytoplasmic elements within an individual are additive, we find that sexually antagonistic polymorphism is restricted to cases of strong selection on males. However, when fitness interactions among cytoplasmic elements are nonlinear, much more extensive polymorphism can be supported in the cytoplasm. In particular, mitochondrial mutants that have strong beneficial fitness effects in males and weak deleterious fitness effects in females when rare (i.e. ’reverse dominance’) are strongly favoured under paternal leakage. We discuss how such epistasis could arise through preferential segregation of mitochondria in sex‐specific somatic tissues. Our analysis shows how paternal leakage can dampen the evolution of deleterious male effects associated with predominant maternal inheritance of cytoplasm, potentially explaining why ’mothers curse’ is less pervasive than predicted by earlier work.


PLOS ONE | 2013

Absence of complementary sex determination in the parasitoid wasp genus Asobara (Hymenoptera: Braconidae)

Wen-Juan Ma; Bram Kuijper; Jetske G. de Boer; Louis Jacobus Mgn Van De Zande; Leo W. Beukeboom; Bregje Wertheim; Bart A. Pannebakker

An attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits. Nine to thirteen generations of inbreeding were monitored for diploid male production, brood size, offspring sex ratio, and pupal mortality as indicators for CSD. In addition, simulation models were developed to compare these observations to predicted patterns for multilocus CSD with up to ten loci. The inbreeding regime did not result in diploid male production, decreased brood sizes, substantially increased offspring sex ratios nor in increased pupal mortality. The simulations further allowed us to reject CSD with up to ten loci, which is a strong refutation of the multilocus CSD model. We discuss how the absence of CSD can be reconciled with the variation in life-history traits among Asobara species, and the ramifications for the phylogenetic distribution of sex determination mechanisms in the Hymenoptera.

Collaboration


Dive into the Bram Kuijper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ido Pen

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge