Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandon Brooks is active.

Publication


Featured researches published by Brandon Brooks.


Mbio | 2014

Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants

Brandon Brooks; Brian Firek; Christopher S. Miller; Itai Sharon; Brian C. Thomas; Robyn Baker; Michael J. Morowitz; Jillian F. Banfield

BackgroundThe source inoculum of gastrointestinal tract (GIT) microbes is largely influenced by delivery mode in full-term infants, but these influences may be decoupled in very low birth weight (VLBW, <1,500 g) neonates via conventional broad-spectrum antibiotic treatment. We hypothesize the built environment (BE), specifically room surfaces frequently touched by humans, is a predominant source of colonizing microbes in the gut of premature VLBW infants. Here, we present the first matched fecal-BE time series analysis of two preterm VLBW neonates housed in a neonatal intensive care unit (NICU) over the first month of life.ResultsFresh fecal samples were collected every 3 days and metagenomes sequenced on an Illumina HiSeq2000 device. For each fecal sample, approximately 33 swabs were collected from each NICU room from 6 specified areas: sink, feeding and intubation tubing, hands of healthcare providers and parents, general surfaces, and nurse station electronics (keyboard, mouse, and cell phone). Swabs were processed using a recently developed ‘expectation maximization iterative reconstruction of genes from the environment’ (EMIRGE) amplicon pipeline in which full-length 16S rRNA amplicons were sheared and sequenced using an Illumina platform, and short reads reassembled into full-length genes. Over 24,000 full-length 16S rRNA sequences were produced, generating an average of approximately 12,000 operational taxonomic units (OTUs) (clustered at 97% nucleotide identity) per room-infant pair. Dominant gut taxa, including Staphylococcus epidermidis, Klebsiella pneumoniae, Bacteroides fragilis, and Escherichia coli, were widely distributed throughout the room environment with many gut colonizers detected in more than half of samples. Reconstructed genomes from infant gut colonizers revealed a suite of genes that confer resistance to antibiotics (for example, tetracycline, fluoroquinolone, and aminoglycoside) and sterilizing agents, which likely offer a competitive advantage in the NICU environment.ConclusionsWe have developed a high-throughput culture-independent approach that integrates room surveys based on full-length 16S rRNA gene sequences with metagenomic analysis of fecal samples collected from infants in the room. The approach enabled identification of discrete ICU reservoirs of microbes that also colonized the infant gut and provided evidence for the presence of certain organisms in the room prior to their detection in the gut.


eLife | 2015

Gut bacteria are rarely shared by co-hospitalized premature infants,regardless of necrotizing enterocolitis development

Tali Raveh-Sadka; Brian C. Thomas; Andrea Singh; Brian Firek; Brandon Brooks; Cindy J. Castelle; Itai Sharon; Robyn Baker; Misty Good; Michael J. Morowitz; Jillian F. Banfield

Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct. In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Importantly, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales. DOI: http://dx.doi.org/10.7554/eLife.05477.001


Proteomics | 2015

Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During a Preterm Infant Gut Colonization Case

Jacque C. Young; Chongle Pan; Rachel M Adams; Brandon Brooks; Jillian F. Banfield; Michael J. Morowitz; Robert L. Hettich

Microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time‐dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. To this end, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data. More specifically, the function of the microbial community initially involved biomass growth, protein production, and lipid metabolism, and then switched to more complex metabolic functions, such as carbohydrate metabolism, once the community stabilized and matured. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil‐derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Likewise, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. This study provides the first snapshot of coordinated human and microbial protein expression in a preterm infants gut during early development.


Genome Research | 2017

Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

Matthew R Olm; Christopher T. Brown; Brandon Brooks; Brian Firek; Robyn Baker; David Burstein; Karina Soenjoyo; Brian C. Thomas; Michael J. Morowitz; Jillian F. Banfield

The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity.


Mbio | 2017

Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems

Joanne B. Emerson; Rachel I. Adams; Clarisse M. Betancourt Román; Brandon Brooks; David A. Coil; Katherine E. Dahlhausen; Holly H. Ganz; Erica M. Hartmann; Tiffany Y. Hsu; Nicholas B. Justice; Ivan G. Paulino-Lima; Julia C. Luongo; Despoina S. Lymperopoulou; Cinta Gomez-Silvan; Brooke Rothschild-Mancinelli; Melike Balk; Curtis Huttenhower; Andreas Nocker; Parag Vaishampayan; Lynn J. Rothschild

While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.


Frontiers in Microbiology | 2015

Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant.

Brandon Brooks; Ryan S. Mueller; Jacque C. Young; Michael J. Morowitz; Robert L. Hettich; Jillian F. Banfield

While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13–21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.


The ISME Journal | 2017

dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication

Matthew R Olm; Christopher T. Brown; Brandon Brooks; Jillian F. Banfield

The number of microbial genomes sequenced each year is expanding rapidly, in part due to genome-resolved metagenomic studies that routinely recover hundreds of draft-quality genomes. Rapid algorithms have been developed to comprehensively compare large genome sets, but they are not accurate with draft-quality genomes. Here we present dRep, a program that reduces the computational time for pairwise genome comparisons by sequentially applying a fast, inaccurate estimation of genome distance, and a slow, accurate measure of average nucleotide identity. dRep achieves a 28 × increase in speed with perfect recall and precision when benchmarked against previously developed algorithms. We demonstrate the use of dRep for genome recovery from time-series datasets. Each metagenome was assembled separately, and dRep was used to identify groups of essentially identical genomes and select the best genome from each replicate set. This resulted in recovery of significantly more and higher-quality genomes compared to the set recovered using co-assembly.


PLOS ONE | 2016

Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

Dusan Licina; Seema Bhangar; Brandon Brooks; Robyn Baker; Brian Firek; Xiaochen Tang; Michael J. Morowitz; Jillian F. Banfield; William W. Nazaroff

Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor-generated particles for infant’s exposure to airborne particulate matter in the NICU.


Nature Communications | 2017

Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome

Brandon Brooks; Matthew R Olm; Brian Firek; Robyn Baker; Brian C. Thomas; Michael J. Morowitz; Jillian F. Banfield

Preterm infants exhibit different microbiome colonization patterns relative to full-term infants, and it is speculated that the hospital room environment may contribute to infant microbiome development. Here, we present a genome-resolved metagenomic study of microbial genotypes from the gastrointestinal tracts of infants and from the neonatal intensive care unit (NICU) room environment. Some strains detected in hospitalized infants also occur in sinks and on surfaces, and belong to species such as Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae, which are frequently implicated in nosocomial infection and preterm infant gut colonization. Of the 15 K. pneumoniae strains detected in the study, four were detected in both infant gut and room samples. Time series experiments showed that nearly all strains associated with infant gut colonization can be detected in the room after, and often before, detection in the gut. Thus, we conclude that a component of premature infant gut colonization is the cycle of microbial exchange between the room and the occupant.It is thought that the hospital environment may contribute to infant microbiome development. Here, Brooks et al. present a genome-resolved metagenomic study of microbial genotypes from the infant gut and from neonatal intensive care unit rooms, showing that some strains are found in both infants and rooms.


Pancreas | 2017

Disturbances of the Perioperative Microbiome Across Multiple Body Sites in Patients Undergoing Pancreaticoduodenectomy.

Matthew B. Rogers; Victoria Aveson; Brian Firek; Andrew Yeh; Brandon Brooks; Rachel Brower-Sinning; Jennifer Steve; Jillian F. Banfield; Amer H. Zureikat; Melissa E. Hogg; Brian A. Boone; Herbert J. Zeh; Michael J. Morowitz

Objective The goals of this study were to characterize bacterial communities within fecal samples, pancreatic fluid, bile, and jejunal contents from patients undergoing pancreaticoduodenectomy (PD) and to identify associations between microbiome profiles and clinical variables. Methods Fluid was collected from the pancreas, common bile duct, and proximal jejunum from 50 PD patients. Postoperative fecal samples were also collected. The microbial burden within samples was quantified with droplet digital polymerase chain reaction. Bacterial 16S ribosomal RNA gene sequences were amplified, sequenced, and analyzed. Data from fecal samples were compared with publicly available data obtained from volunteers. Results Droplet digital polymerase chain reaction confirmed the presence of bacteria in all sample types, including pancreatic fluid. Relative to samples from the American Gut Project, fecal samples from PD patients were enriched with Klebsiella and Bacteroides and were depleted of anaerobic taxa (eg, Roseburia and Faecalibacterium). Similar patterns were observed within PD pancreas, bile, and jejunal samples. Postoperative fecal samples from patients with a pancreatic fistula contained increased abundance of Klebsiella and decreased abundance of commensal anaerobes, for example, Ruminococcus. Conclusions This study confirms the presence of altered bacterial populations within samples from PD patients. Future research must validate these findings and may evaluate targeted microbiome modifications to improve outcomes in PD patients.

Collaboration


Dive into the Brandon Brooks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Firek

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Robyn Baker

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew R Olm

University of California

View shared research outputs
Top Co-Authors

Avatar

Dusan Licina

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaochen Tang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge