Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brandon Lindley is active.

Publication


Featured researches published by Brandon Lindley.


Physica D: Nonlinear Phenomena | 2013

An Iterative Action Minimizing Method for Computing Optimal Paths in Stochastic Dynamical Systems

Brandon Lindley; Ira B. Schwartz

Abstract We present a numerical method for computing optimal transition pathways and transition rates in systems of stochastic differential equations (SDEs). In particular, we compute the most probable transition path of stochastic equations by minimizing the effective action in a corresponding deterministic Hamiltonian system. The numerical method presented here involves using an iterative scheme for solving a two-point boundary value problem for the Hamiltonian system. We validate our method by applying it to both continuous stochastic systems, such as nonlinear oscillators governed by the Duffing equation, and finite discrete systems, such as epidemic problems, which are governed by a set of master equations. Furthermore, we demonstrate that this method is capable of dealing with stochastic systems of delay differential equations.


EPL | 2014

Rare-event extinction on stochastic networks

Brandon Lindley; Leah B. Shaw; Ira B. Schwartz

We consider the problem of extinction processes on random networks with a given structure. For sufficiently large well-mixed populations, the process of extinction of one or more state variable components occurs in the tail of the quasi-stationary probability distribution, thereby making it a rare event. Here we show how to extend the theory of large deviations to random networks to predict extinction times. In particular, we use the theory to find the most probable path leading to extinction. We apply the methodology to epidemic models and discover how mean extinction times scale with epidemiological and network parameters in Erdos-Renyi networks. The results are shown to compare quite well with Monte Carlo simulations of the network in predicting both the most probable paths to extinction and mean extinction times.


PLOS ONE | 2013

Intervention-based stochastic disease eradication.

Lora Billings; Luis Mier-y-Teran-Romero; Brandon Lindley; Ira B. Schwartz

Disease control is of paramount importance in public health, with infectious disease extinction as the ultimate goal. Although diseases may go extinct due to random loss of effective contacts where the infection is transmitted to new susceptible individuals, the time to extinction in the absence of control may be prohibitively long. Intervention controls are typically defined on a deterministic schedule. In reality, however, such policies are administered as a random process, while still possessing a mean period. Here, we consider the effect of randomly distributed intervention as disease control on large finite populations. We show explicitly how intervention control, based on mean period and treatment fraction, modulates the average extinction times as a function of population size and rate of infection spread. In particular, our results show an exponential improvement in extinction times even though the controls are implemented using a random Poisson distribution. Finally, we discover those parameter regimes where random treatment yields an exponential improvement in extinction times over the application of strictly periodic intervention. The implication of our results is discussed in light of the availability of limited resources for control.


Journal of Theoretical Biology | 2013

A mechanochemical model for auto-regulation of lung airway surface layer volume

Gregory Herschlag; Guilherme J. M. Garcia; Brian Button; Robert Tarran; Brandon Lindley; Benjamin Z. Reinhardt; Timothy C. Elston; M. Gregory Forest

We develop a proof-of-principle model for auto-regulation of water volume in the lung airway surface layer (ASL) by coupling biochemical kinetics, transient ASL volume, and homeostatic mechanical stresses. The model is based on the hypothesis that ASL volume is sensed through soluble mediators and phasic stresses generated by beating cilia and air drag forces. Model parameters are fit based on the available data on human bronchial epithelial cell cultures. Simulations then demonstrate that homeostatic volume regulation is a natural consequence of the processes described. The model maintains ASL volume within a physiological range that modulates with phasic stress frequency and amplitude. Next, we show that the model successfully reproduces the responses of cell cultures to significant isotonic and hypotonic challenges, and to hypertonic saline, an effective therapy for mucus hydration in cystic fibrosis patients. These results compel an advanced airway hydration model with therapeutic value that will necessitate detailed kinetics of multiple molecular pathways, feedback to ASL viscoelasticity properties, and stress signaling from the ASL to the cilia and epithelial cells.


Physical Review E | 2012

Statistical multimoment bifurcations in random-delay coupled swarms.

Luis Mier-y-Teran-Romero; Brandon Lindley; Ira B. Schwartz

We study the effects of discrete, randomly distributed time delays on the dynamics of a coupled system of self-propelling particles. Bifurcation analysis on a mean field approximation of the system reveals that the system possesses patterns with certain universal characteristics that depend on distinguished moments of the time delay distribution. Specifically, we show both theoretically and numerically that although bifurcations of simple patterns, such as translations, change stability only as a function of the first moment of the time delay distribution, more complex patterns arising from Hopf bifurcations depend on all of the moments.


american control conference | 2013

Noise induced pattern switching in randomly distributed delayed swarms

Brandon Lindley; Luis Mier-y-Teran-Romero; Ira B. Schwartz

We study the effects of noise on the dynamics of a system of coupled self-propelling particles in the case where the coupling is time-delayed, and the delays are discrete and randomly generated. Previous work has demonstrated that the stability of a class of emerging patterns depends upon all moments of the time delay distribution, and predicts their bifurcation parameter ranges. Near the bifurcations of these patterns, noise may induce a transition from one type of pattern to another. We study the onset of these noise-induced swarm re-organizations by numerically simulating the system over a range of noise intensities and for various distributions of the delays. Interestingly, there is a critical noise threshold above which the system is forced to transition from a less organized state to a more organized one. We explore this phenomenon by quantifying this critical noise threshold, and note that transition time between states varies as a function of both the noise intensity and delay distribution.


international conference on robotics and automation | 2012

Randomly distributed delayed communication and coherent swarm patterns

Brandon Lindley; Luis Mier-y-Teran-Romero; Ira B. Schwartz

Previously we showed how delay communication between globally coupled self-propelled agents causes new spatio-temporal patterns to arise when the delay coupling is fixed among all agents [1]. In this paper, we show how discrete, randomly distributed delays affect the dynamical patterns. In particular, we investigate how the standard deviation of the time delay distribution affects the stability of the different patterns as well as the switching probability between coherent states.


Optics Express | 2011

Modeling synchronization in networks of delay-coupled fiber ring lasers

Brandon Lindley; Ira B. Schwartz

We study the onset of synchronization in a network of N delay-coupled stochastic fiber ring lasers with respect to various parameters when the coupling power is weak. In particular, for groups of three or more ring lasers mutually coupled to a central hub laser, we demonstrate a robust tendency toward out-of-phase (achronal) synchronization between the N-1 outer lasers and the single inner laser. In contrast to the achronal synchronization, we find the outer lasers synchronize with zero-lag (isochronal) with respect to each other, thus forming a set of N-1 coherent fiber lasers.


Physical Review E | 2012

Multicomponent hydrodynamic model for heterogeneous biofilms: Two-dimensional numerical simulations of growth and interaction with flows

Brandon Lindley; Qi Wang; Tianyu Zhang


Journal of Non-newtonian Fluid Mechanics | 2008

Extensions of the Ferry shear wave model for active linear and nonlinear microrheology

Sorin Mitran; M. Gregory Forest; Lingxing Yao; Brandon Lindley; David B. Hill

Collaboration


Dive into the Brandon Lindley's collaboration.

Top Co-Authors

Avatar

Ira B. Schwartz

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Luis Mier-y-Teran-Romero

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Gregory Forest

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David B. Hill

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sorin Mitran

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lora Billings

Montclair State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Button

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge