Brian Button
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian Button.
Science | 2012
Brian Button; Li Heng Cai; Camille Ehre; Mehmet Kesimer; David B. Hill; John K. Sheehan; Richard C. Boucher; Michael Rubinstein
Sticky Mucus? Mucus—experienced, for example, in the form of a runny nose or productive cough—is one of the tools the body uses to expel or prevent the uptake of foreign matter. In a number of diseases, a failure of the normal mucus-control system leads to obstructions of the airways and respiratory problems. Button et al. (p. 937; see the Perspective by Dickey) examine the existing gel-on-liquid model, where the mucus is thought to sit on a watery periciliary layer around the beating lung cilia that has been used to explain the flow of mucus. A gel-on-brush model is proposed where the mucus sits on a brushlike periciliary layer. The key elements of this layer are membrane-tethered macromolecules that cause normal flow and clearance of mucus. When dehydrated, the interface is disrupted, preventing normal mucus motion. The lung is protected by a brushlike biopolymer that contributes to mucus flow and can trigger muco-obstructive diseases. Mucus clearance is the primary defense mechanism that protects airways from inhaled infectious and toxic agents. In the current gel-on-liquid mucus clearance model, a mucus gel is propelled on top of a “watery” periciliary layer surrounding the cilia. However, this model fails to explain the formation of a distinct mucus layer in health or why mucus clearance fails in disease. We propose a gel-on-brush model in which the periciliary layer is occupied by membrane-spanning mucins and mucopolysaccharides densely tethered to the airway surface. This brush prevents mucus penetration into the periciliary space and causes mucus to form a distinct layer. The relative osmotic moduli of the mucus and periciliary brush layers explain both the stability of mucus clearance in health and its failure in airway disease.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Hirotoshi Matsui; Victoria E. Wagner; David B. Hill; Ute Schwab; Troy D. Rogers; Brian Button; Russell M. Taylor; Richard Superfine; Michael Rubinstein; Barbara H. Iglewski; Richard C. Boucher
A vexing problem in cystic fibrosis (CF) pathogenesis has been to explain the high prevalence of Pseudomonas aeruginosa biofilms in CF airways. We speculated that airway surface liquid (ASL) hyperabsorption generates a concentrated airway mucus that interacts with P. aeruginosa to promote biofilms. To model CF vs. normal airway infections, normal (2.5% solids) and CF-like concentrated (8% solids) mucus were prepared, placed in flat chambers, and infected with an ≈5 × 103 strain PAO1 P. aeruginosa. Although bacteria grew to 1010 cfu/ml in both mucus concentrations, macrocolony formation was detected only in the CF-like (8% solids) mucus. Biophysical and functional measurements revealed that concentrated mucus exhibited properties that restrict bacterial motility and small molecule diffusion, resulting in high local bacterial densities with high autoinducer concentrations. These properties also rendered secondary forms of antimicrobial defense, e.g., lactoferrin, ineffective in preventing biofilm formation in a CF-like mucus environment. These data link airway surface liquid hyperabsorption to the high incidence of P. aeruginosa biofilms in CF via changes in the hydration-dependent physical–chemical properties of mucus and suggest that the thickened mucus gel model will be useful to develop therapies of P. aeruginosa biofilms in CF airways.
PLOS Biology | 2009
Liqun Zhang; Brian Button; Sherif E. Gabriel; Susan Burkett; Yu Yan; Mario H. Skiadopoulos; Yan Li Dang; Leatrice Vogel; Tristan R. McKay; April Mengos; Richard C. Boucher; Peter L. Collins; Raymond J. Pickles
Delivering CFTR to ciliated cells of cystic fibrosis (CF) patients fully restores ion and fluid transport to the lumenal surface of airway epithelium and returns mucus transport rates to those of non-CF airways.
The Journal of Physiology | 2007
Brian Button; Maryse Picher; Richard C. Boucher
In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2‐purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS‐induced increase in ASL ATP concentration was sufficient to induce purinoceptor‐mediated increases in ASL height and MCC, via inhibition of epithelial Na+‐channel‐mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+‐activated chloride channels. In contrast, static, non‐oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence.
Respiratory Physiology & Neurobiology | 2008
Brian Button; Richard C. Boucher
Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Journal of Clinical Investigation | 2014
Ashley G. Henderson; Camille Ehre; Brian Button; Lubna H. Abdullah; Li Heng Cai; Margaret W. Leigh; Genevieve DeMaria; Hiro Matsui; Scott H. Donaldson; C. William Davis; John K. Sheehan; Richard C. Boucher; Mehmet Kesimer
The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer-dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease.
Biomedical Optics Express | 2012
Amy L. Oldenburg; Raghav K. Chhetri; David B. Hill; Brian Button
Muco-ciliary transport in the human airway is a crucial defense mechanism for removing inhaled pathogens. Optical coherence tomography (OCT) is well-suited to monitor functional dynamics of cilia and mucus on the airway epithelium. Here we demonstrate several OCT-based methods upon an actively transporting in vitro bronchial epithelial model and ex vivo mouse trachea. We show quantitative flow imaging of optically turbid mucus, semi-quantitative analysis of the ciliary beat frequency, and functional imaging of the periciliary layer. These may translate to clinical methods for endoscopic monitoring of muco-ciliary transport in diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD).
Journal of Biological Chemistry | 2010
Marcus A. Mall; Brian Button; Bjarki Johannesson; Zhe Zhou; Alessandra Livraghi; Ray A. Caldwell; Susanne C. Schubert; Carsten Schultz; Wanda K. O'Neal; Sylvain Pradervand; Edith Hummler; Bernard C. Rossier; Barbara R. Grubb; Richard C. Boucher
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na+ channel β-subunit (βENaC-Tg) suggest that raised airway Na+ transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function βENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, βENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na+ transport measured in Ussing chambers (“flooded” conditions) was raised in both Liddle and βENaC-Tg mice. Because enhanced Na+ transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic “thin film” conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na+ absorption were intact in Liddle but defective in βENaC-Tg mice. We conclude that the capacity to regulate Na+ transport and ASL volume, not absolute Na+ transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Cold Spring Harbor Perspectives in Medicine | 2013
B.M. Button; Brian Button
In cystic fibrosis (CF), a defect in ion transport results in thick and dehydrated airway mucus, which is difficult to clear, making such patients prone to chronic inflammation and bacterial infections. Physiotherapy using a variety of airway clearance techniques (ACTs) represents a key treatment regime by helping clear the airways of thickened, adhered, mucus and, thus, reducing the impact of lung infections and improving lung function. This article aims to bridge the gap between our understanding of the physiological effects of mechanical stresses elicited by ACTs on airway epithelia and the reported effectiveness of ACTs in CF patients. In the first part of this review, the effects of mechanical stress on airway epithelia are discussed in relation to changes in ion transport and stimulation in airway surface layer hydration. The second half is devoted to detailing the most commonly used ACTs to stimulate the removal of mucus from the airways of patients with CF.
American Journal of Respiratory and Critical Care Medicine | 2015
Wayne Anderson; Raymond D. Coakley; Brian Button; Ashley G. Henderson; Kirby L. Zeman; Neil E. Alexis; David B. Peden; Eduardo R. Lazarowski; C. William Davis; Summer L. Bailey; Fred Fuller; Martha Almond; Bahjat F. Qaqish; Elena Bordonali; Michael Rubinstein; William D. Bennett; Mehmet Kesimer; Richard C. Boucher
RATIONALE Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. OBJECTIVES We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. METHODS We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. MEASUREMENTS AND RESULTS CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. CONCLUSIONS Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis.