Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brenda Bradley is active.

Publication


Featured researches published by Brenda Bradley.


Nature Immunology | 2010

Chromogranin A is an autoantigen in type 1 diabetes

Brian D. Stadinski; Thomas Delong; Nichole Reisdorph; Richard Reisdorph; Roger L. Powell; Michael Armstrong; Jon D. Piganelli; Gene Barbour; Brenda Bradley; Frances Crawford; Philippa Marrack; Sushil K. Mahata; John W. Kappler; Kathryn Haskins

Autoreactive CD4+ T cells are involved in the pathogenesis of many autoimmune diseases, but the antigens that stimulate their responses have been difficult to identify and in most cases are not well defined. In the nonobese diabetic (NOD) mouse model of type 1 diabetes, we have identified the peptide WE14 from chromogranin A (ChgA) as the antigen for highly diabetogenic CD4+ T cell clones. Peptide truncation and extension analysis shows that WE14 bound to the NOD mouse major histocompatibility complex class II molecule I-Ag7 in an atypical manner, occupying only the carboxy-terminal half of the I-Ag7 peptide-binding groove. This finding extends the list of T cell antigens in type 1 diabetes and supports the idea that autoreactive T cells respond to unusually presented self peptides.


Diabetes | 1988

T-Lymphocyte Clone Specific for Pancreatic Islet Antigen

Kathryn Haskins; Mary Portas; Brenda Bradley; Dale R. Wegmann; Kevin J. Lafferty

A cloned T-lymphocyte line, BDC-2.5, was derived from a nonobese diabetic (NOD) mouse and has been found to exhibit specificity for islet cell antigen in vitro and in vivo. This clone is a CD4+ T-lymphocyte that proliferates and makes lymphokine in response to islet cell antigen- and NOD antigen-presenting cells. In an in vivo transplantation system in which islet grafts were made in the presence or absence of the BDC-2.5 T-lymphocytes, it was found that incorporation of the islet-specific T-lymphocytes into the graft site resulted in complete destruction of the transplanted tissue. Similar grafts made with pituitary tissue were not affected by the T-lymphocyte clone. These results suggest that the islet-specific T-lymphocytes mediate islet destruction in a tissue-specific manner.


Science | 2016

Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion

Thomas Delong; Timothy A. Wiles; Rocky L. Baker; Brenda Bradley; Gene Barbour; Richard Reisdorph; Michael Armstrong; Roger L. Powell; Nichole Reisdorph; Nitesh Kumar; Colleen M. Elso; Megan E. DeNicola; Rita Bottino; Alvin C. Powers; David M. Harlan; Sally C. Kent; Stuart I. Mannering; Kathryn Haskins

T cells target peptide combos One of the enduring mysteries of autoimmunity is the identity of the specific proteins targeted by autoimmune T cells. Delong et al. used mass spectrometry to elucidate the peptide targets of autoimmune T cells isolated from a mouse model of type 1 diabetes. T cells targeted hybrid peptides formed by the covalent linking of a peptide derived from pro-insulin to other peptides derived from proteins found in pancreatic beta cells. T cells isolated from the pancreatic islets of two individuals with type 1 diabetes also recognized such hybrid peptides, suggesting that they may play an important role in driving disease. Science, this issue p. 711 Autoimmune T cells recognize covalently linked peptides derived from two distinct proteins. T cell–mediated destruction of insulin-producing β cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in β cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in β cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in β cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.


Annals of the New York Academy of Sciences | 2003

Oxidative stress in type 1 diabetes.

Kathryn Haskins; Brenda Bradley; Katherine Powers; Valerie Fadok; Sonia C. Flores; Xiaofeng Ling; Subbiah Pugazhenthi; Jane E.B. Reusch; Jennifer A. Kench

Abstract: We have been investigating the effects of preventing oxidative stress on pathogenesis and complications of type 1 diabetes in the NOD mouse model. Our studies have shown that damage caused by oxidative stress is higher in islets and vascular tissue of NOD mice than in nonautoimmune controls or a diabetes‐resistant NOD mouse. In addition, phagocytic function and cytokine production by macrophages are aberrant in the NOD. We have demonstrated that treatment of prediabetic NOD mice for 2 weeks with a metalloporphyrin superoxide dismutase (SOD) mimetic results in marked reduction of oxidative stress in islets and vascular tissue and a reversal of macrophage defects.


Diabetes | 1992

CD8 T Cells Are Not Required for Islet Destruction Induced by a CD4+ Islet-Specific T-Cell Clone

Brenda Bradley; Kathryn Haskins; F. G. La Rosa; Kevin J. Lafferty

A panel of CD4+ T-cell clones has been isolated from the spleen and lymph nodes of diabetic NOD mice. These clones have been shown to be islet-specific both in vivo and in vitro. One of the clones, BDC-6.9, initiates extensive damage to islet tissue when placed adjacent to an NOD islet graft that has been used to reverse diabetes in (CBA × NOD)F1 recipients or when injected intraperitonealiy into such animals. In this study, we show that BDC-6.9 T cells can initiate islet destruction in the absence of detectable CD8 T cells either in the periphery or in the lesion that develops after the transfer of the cloned islet-reactive T cells.


Diabetes | 2012

Diabetogenic T-Cell Clones Recognize an Altered Peptide of Chromogranin A

Thomas Delong; Rocky L. Baker; Jing He; Gene Barbour; Brenda Bradley; Kathryn Haskins

Chromogranin A (ChgA) has been identified as the antigen target for three NOD-derived, diabetogenic CD4 T-cell clones, including the well-known BDC-2.5. These T-cell clones respond weakly to the peptide WE14, a naturally occurring proteolytic cleavage product from ChgA. We show here that WE14 can be converted into a highly antigenic T-cell epitope through treatment with the enzyme transglutaminase (TGase). The WE14 responses of three NOD-derived CD4 T-cell clones, each with different T-cell receptors (TCRs), and of T cells from BDC-2.5 TCR transgenic mice are increased after TGase conversion of the peptide. Primary CD4 T cells isolated from NOD mice also respond to high concentrations of WE14 and significantly lower concentrations of TGase-treated WE14. We hypothesize that posttranslational modification plays a critical role in the generation of T-cell epitopes in type 1 diabetes.


Diabetes | 1986

Desferrioxamine Treatment Prevents Chronic Islet Allograft Damage

Brenda Bradley; Stephen J. Prowse; Paul Bauling; Kevin J. Lafferty

BALB/cByJ islet allografts are acutely rejected when transplanted into allogeneic mice (CBA/J). Culture of the tissue for 7 days in 95% O2 before grafting is a suboptimal treatment for the reduction of immunogenicity in this strain combination. Approximately half the animals reject these transplants in a chronic fashion. Chronic islet rejection differs from acute rejection of uncultured allogeneic islets. During chronic rejection, beta cells within the transplanted tissue degranulate but remain intact when the animal returns to the diabetic condition. Acute islet rejection is characterized by the destruction of beta cells that remain heavily granulated as long as they remain intact. We examined the effect of the iron chelating agent, desferrioxamine, on chronic islet allograft damage. Desferrioxamine inhibited chronic islet allograft damage but did not influence the process of rejection of uncultured islet tissue. This effect of desferrioxamine could not be attributed to a direct immunosuppressive effect of this agent.


Diabetes | 2011

Islet Amyloid Polypeptide Is a Target Antigen for Diabetogenic CD4+ T Cells

Thomas Delong; Rocky L. Baker; Nichole Reisdorph; Richard Reisdorph; Roger L. Powell; Michael Armstrong; Gene Barbour; Brenda Bradley; Kathryn Haskins

OBJECTIVE To investigate autoantigens in β-cells, we have used a panel of pathogenic T-cell clones that were derived from the NOD mouse. Our particular focus in this study was on the identification of the target antigen for the highly diabetogenic T-cell clone BDC-5.2.9. RESEARCH DESIGN AND METHODS To purify β-cell antigens, we applied sequential size exclusion chromatography and reverse-phase high-performance liquid chromatography to membrane preparations of β-cell tumors. The presence of antigen was monitored by measuring the interferon-γ production of BDC-5.2.9 in response to chromatographic fractions in the presence of NOD antigen-presenting cells. Peak antigenic fractions were analyzed by ion-trap mass spectrometry, and candidate proteins were further investigated through peptide analysis and, where possible, testing of islet tissue from gene knockout mice. RESULTS Mass-spectrometric analysis revealed the presence of islet amyloid polypeptide (IAPP) in antigen-containing fractions. Confirmation of IAPP as the antigen target was demonstrated by the inability of islets from IAPP-deficient mice to stimulate BDC-5.2.9 in vitro and in vivo and by the existence of an IAPP-derived peptide that strongly stimulates BCD-5.2.9. CONCLUSIONS IAPP is the target antigen for the diabetogenic CD4 T-cell clone BDC-5.2.9.


Journal of Autoimmunity | 2017

An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse.

Timothy A. Wiles; Thomas Delong; Rocky L. Baker; Brenda Bradley; Gene Barbour; Roger L. Powell; Nichole Reisdorph; Kathryn Haskins

BDC-6.9, a diabetogenic CD4 T cell clone isolated from a non-obese diabetic (NOD) mouse, responds to pancreatic islet cells from NOD but not BALB/c mice. We recently reported that a hybrid insulin peptide (HIP), 6.9HIP, formed by linkage of an insulin C-peptide fragment and a fragment of islet amyloid polypeptide (IAPP), is the antigen for BDC-6.9. We report here that the core 12-mer peptide from 6.9HIP, centered on the hybrid peptide junction, is also highly antigenic for BDC-6.9. In agreement with the observation that BALB/c islet cells fail to stimulate the T cell clone, a single amino acid difference in the BALB/c IAPP sequence renders the BALB/c version of the HIP only weakly antigenic. Mutant peptide analysis indicates that each parent molecule-insulin C-peptide and IAPP-donates residues critical for antigenicity. Through mass spectrometric analysis, we determine the distribution of naturally occurring 6.9HIP across chromatographic fractions of proteins from pancreatic beta cells. This distribution closely matches the profile of the T cell response to the fractions, confirming that 6.9HIP is the endogenous islet antigen for the clone. Using a new MHC II tetramer reagent, 6.9HIP-tet, we show that T cells specific for the 6.9HIP peptide are prevalent in the pancreas of diabetic NOD mice. Further study of HIPs and HIP-reactive T cells could yield valuable insight into key factors driving progression to diabetes and thereby inform efforts to prevent or reverse this disease.


Journal of Autoimmunity | 1990

In vivo activity of an islet-reactive T-cell clone

Brenda Bradley; Yanyun Wang; Kevin J. Lafferty; Kathryn Haskins

BDC-6.9 is a CD4-positive T-cell clone, specific for NOD islets, which was isolated from the spleen and lymph nodes of a diabetic NOD mouse. The cells were transplanted in a blood clot adjacent to established NOD islet grafts in diabetic (CBA X NOD)F1 recipients. The BDC-6.9 cells initiated extensive damage to the islet grafts, while a non-islet specific clone transplanted adjacent to grafted islets caused no noticeable damage. In addition, the BDC-6.9 cells initiated similar destruction when injected intraperitoneally, suggesting that they may have some migratory capacity. By introducing these islet-reactive cells into the (CBA X NOD)F1, a non-diabetes prone environment, we hope to clarify the role of the islet-specific CD4 cell as related to islet destruction in vivo.

Collaboration


Dive into the Brenda Bradley's collaboration.

Top Co-Authors

Avatar

Kathryn Haskins

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Gene Barbour

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Thomas Delong

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rocky L. Baker

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing He

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin S. Lindsay

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge