Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gene Barbour is active.

Publication


Featured researches published by Gene Barbour.


Nature Immunology | 2010

Chromogranin A is an autoantigen in type 1 diabetes

Brian D. Stadinski; Thomas Delong; Nichole Reisdorph; Richard Reisdorph; Roger L. Powell; Michael Armstrong; Jon D. Piganelli; Gene Barbour; Brenda Bradley; Frances Crawford; Philippa Marrack; Sushil K. Mahata; John W. Kappler; Kathryn Haskins

Autoreactive CD4+ T cells are involved in the pathogenesis of many autoimmune diseases, but the antigens that stimulate their responses have been difficult to identify and in most cases are not well defined. In the nonobese diabetic (NOD) mouse model of type 1 diabetes, we have identified the peptide WE14 from chromogranin A (ChgA) as the antigen for highly diabetogenic CD4+ T cell clones. Peptide truncation and extension analysis shows that WE14 bound to the NOD mouse major histocompatibility complex class II molecule I-Ag7 in an atypical manner, occupying only the carboxy-terminal half of the I-Ag7 peptide-binding groove. This finding extends the list of T cell antigens in type 1 diabetes and supports the idea that autoreactive T cells respond to unusually presented self peptides.


Science | 2016

Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion

Thomas Delong; Timothy A. Wiles; Rocky L. Baker; Brenda Bradley; Gene Barbour; Richard Reisdorph; Michael Armstrong; Roger L. Powell; Nichole Reisdorph; Nitesh Kumar; Colleen M. Elso; Megan E. DeNicola; Rita Bottino; Alvin C. Powers; David M. Harlan; Sally C. Kent; Stuart I. Mannering; Kathryn Haskins

T cells target peptide combos One of the enduring mysteries of autoimmunity is the identity of the specific proteins targeted by autoimmune T cells. Delong et al. used mass spectrometry to elucidate the peptide targets of autoimmune T cells isolated from a mouse model of type 1 diabetes. T cells targeted hybrid peptides formed by the covalent linking of a peptide derived from pro-insulin to other peptides derived from proteins found in pancreatic beta cells. T cells isolated from the pancreatic islets of two individuals with type 1 diabetes also recognized such hybrid peptides, suggesting that they may play an important role in driving disease. Science, this issue p. 711 Autoimmune T cells recognize covalently linked peptides derived from two distinct proteins. T cell–mediated destruction of insulin-producing β cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in β cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in β cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in β cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.


Diabetes | 2012

Diabetogenic T-Cell Clones Recognize an Altered Peptide of Chromogranin A

Thomas Delong; Rocky L. Baker; Jing He; Gene Barbour; Brenda Bradley; Kathryn Haskins

Chromogranin A (ChgA) has been identified as the antigen target for three NOD-derived, diabetogenic CD4 T-cell clones, including the well-known BDC-2.5. These T-cell clones respond weakly to the peptide WE14, a naturally occurring proteolytic cleavage product from ChgA. We show here that WE14 can be converted into a highly antigenic T-cell epitope through treatment with the enzyme transglutaminase (TGase). The WE14 responses of three NOD-derived CD4 T-cell clones, each with different T-cell receptors (TCRs), and of T cells from BDC-2.5 TCR transgenic mice are increased after TGase conversion of the peptide. Primary CD4 T cells isolated from NOD mice also respond to high concentrations of WE14 and significantly lower concentrations of TGase-treated WE14. We hypothesize that posttranslational modification plays a critical role in the generation of T-cell epitopes in type 1 diabetes.


Journal of Immunology | 2008

Regulatory T Cells Prevent Transfer of Type 1 Diabetes in NOD Mice Only When Their Antigen Is Present In Vivo

Daniel Tonkin; Jing He; Gene Barbour; Kathryn Haskins

Regulatory T cells (Tregs) can potentially be used as tools to suppress pathogenic T cells in autoimmune diseases such as type 1 diabetes. For use in therapy it is critically important to determine whether suppression by Tregs requires a population specific for the target of autoimmunity, such as pancreatic β cells in type 1 diabetes. Current reports in the NOD mouse model of type 1 diabetes are in conflict as to whether suppression of disease by Tregs is Ag-dependent. We have addressed this question by evaluating the effects of islet-specific TGF-β-induced Tregs in recipient mice in which the Treg Ag is either present or absent. Our data show that Treg numbers in pancreas are reduced in the absence of Ag and that there are Ag-dependent differences in the effects of Tregs on pathogenic T cells in the pancreas. By examining protection from diabetes induced by T cell transfer, we have clearly demonstrated that Tregs suppress only in the presence of their Ag and not in mice in which the islets lack the Treg Ag. Our results also suggest that in sufficiently large populations of polyclonal Tregs, there will be adequate numbers of islet-specific Tregs to suppress diabetes.


Diabetes | 2011

Islet Amyloid Polypeptide Is a Target Antigen for Diabetogenic CD4+ T Cells

Thomas Delong; Rocky L. Baker; Nichole Reisdorph; Richard Reisdorph; Roger L. Powell; Michael Armstrong; Gene Barbour; Brenda Bradley; Kathryn Haskins

OBJECTIVE To investigate autoantigens in β-cells, we have used a panel of pathogenic T-cell clones that were derived from the NOD mouse. Our particular focus in this study was on the identification of the target antigen for the highly diabetogenic T-cell clone BDC-5.2.9. RESEARCH DESIGN AND METHODS To purify β-cell antigens, we applied sequential size exclusion chromatography and reverse-phase high-performance liquid chromatography to membrane preparations of β-cell tumors. The presence of antigen was monitored by measuring the interferon-γ production of BDC-5.2.9 in response to chromatographic fractions in the presence of NOD antigen-presenting cells. Peak antigenic fractions were analyzed by ion-trap mass spectrometry, and candidate proteins were further investigated through peptide analysis and, where possible, testing of islet tissue from gene knockout mice. RESULTS Mass-spectrometric analysis revealed the presence of islet amyloid polypeptide (IAPP) in antigen-containing fractions. Confirmation of IAPP as the antigen target was demonstrated by the inability of islets from IAPP-deficient mice to stimulate BDC-5.2.9 in vitro and in vivo and by the existence of an IAPP-derived peptide that strongly stimulates BCD-5.2.9. CONCLUSIONS IAPP is the target antigen for the diabetogenic CD4 T-cell clone BDC-5.2.9.


Journal of Autoimmunity | 2017

An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse.

Timothy A. Wiles; Thomas Delong; Rocky L. Baker; Brenda Bradley; Gene Barbour; Roger L. Powell; Nichole Reisdorph; Kathryn Haskins

BDC-6.9, a diabetogenic CD4 T cell clone isolated from a non-obese diabetic (NOD) mouse, responds to pancreatic islet cells from NOD but not BALB/c mice. We recently reported that a hybrid insulin peptide (HIP), 6.9HIP, formed by linkage of an insulin C-peptide fragment and a fragment of islet amyloid polypeptide (IAPP), is the antigen for BDC-6.9. We report here that the core 12-mer peptide from 6.9HIP, centered on the hybrid peptide junction, is also highly antigenic for BDC-6.9. In agreement with the observation that BALB/c islet cells fail to stimulate the T cell clone, a single amino acid difference in the BALB/c IAPP sequence renders the BALB/c version of the HIP only weakly antigenic. Mutant peptide analysis indicates that each parent molecule-insulin C-peptide and IAPP-donates residues critical for antigenicity. Through mass spectrometric analysis, we determine the distribution of naturally occurring 6.9HIP across chromatographic fractions of proteins from pancreatic beta cells. This distribution closely matches the profile of the T cell response to the fractions, confirming that 6.9HIP is the endogenous islet antigen for the clone. Using a new MHC II tetramer reagent, 6.9HIP-tet, we show that T cells specific for the 6.9HIP peptide are prevalent in the pancreas of diabetic NOD mice. Further study of HIPs and HIP-reactive T cells could yield valuable insight into key factors driving progression to diabetes and thereby inform efforts to prevent or reverse this disease.


Journal of Immunology | 2016

Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes

Rocky L. Baker; Brenda Bradley; Timothy A. Wiles; Robin S. Lindsay; Gene Barbour; Thomas Delong; Rachel S. Friedman; Kathryn Haskins

T cells reactive to β cell Ags are critical players in the development of autoimmune type 1 diabetes. Using a panel of diabetogenic CD4 T cell clones derived from the NOD mouse, we recently identified the β cell secretory granule protein, chromogranin A (ChgA), as a new autoantigen in type 1 diabetes. CD4 T cells reactive to ChgA are pathogenic and rapidly transfer diabetes into young NOD recipients. We report in this article that NOD.ChgA−/− mice do not develop diabetes and show little evidence of autoimmunity in the pancreatic islets. Using tetramer analysis, we demonstrate that ChgA-reactive T cells are present in these mice but remain naive. In contrast, in NOD.ChgA+/+ mice, a majority of the ChgA-reactive T cells are Ag experienced. Our results suggest that the presence of ChgA and subsequent activation of ChgA-reactive T cells are essential for the initiation and development of autoimmune diabetes in NOD mice.


Journal of Immunology | 2013

Cutting Edge: CD4 T Cells Reactive to an Islet Amyloid Polypeptide Peptide Accumulate in the Pancreas and Contribute to Disease Pathogenesis in Nonobese Diabetic Mice

Rocky L. Baker; Thomas Delong; Gene Barbour; Brenda Bradley; Maki Nakayama; Kathryn Haskins

We previously reported a peptide KS20 from islet amyloid polypeptide (IAPP) to be the target Ag for a highly diabetogenic CD4 T cell clone BDC-5.2.9. To track IAPP-reactive T cells in NOD mice and determine how they contribute to the pathogenesis of type 1 diabetes, we designed a new I-Ag7 tetramer with high affinity for BDC-5.2.9 that contains the peptide KS20. We found that significant numbers of KS20 tetramer+ CD4 T cells can be detected in the pancreas of prediabetic and diabetic NOD mice. To verify pathogenicity of IAPP-reactive cells, we sorted KS20 tetramer+ cells and cloned them from uncloned T cell lines isolated from spleen and lymph nodes of diabetic mice. We isolated a new KS20-reactive Th1 CD4 T cell clone that rapidly transfers diabetes. Our results suggest that IAPP triggers a broad autoimmune response by CD4 T cells in NOD mice.


Diabetes | 2018

CD4 T Cells Reactive to Hybrid Insulin Peptides are Indicators of Disease Activity in the NOD Mouse

Rocky L. Baker; Braxton L. Jamison; Timothy A. Wiles; Robin S. Lindsay; Gene Barbour; Brenda Bradley; Thomas Delong; Rachel S. Friedman; Maki Nakayama; Kathryn Haskins

We recently established that hybrid insulin peptides (HIPs), formed in islet β-cells by fusion of insulin C-peptide fragments to peptides of chromogranin A or islet amyloid polypeptide, are ligands for diabetogenic CD4 T-cell clones. The goal of this study was to investigate whether HIP-reactive T cells were indicative of ongoing autoimmunity. MHC class II tetramers were used to investigate the presence, phenotype, and function of HIP-reactive and insulin-reactive T cells in NOD mice. Insulin-reactive T cells encounter their antigen early in disease, but they express FoxP3 and therefore may contribute to immune regulation. In contrast, HIP-reactive T cells are proinflammatory and highly diabetogenic in an adoptive transfer model. Because the frequency of antigen-experienced HIP-reactive T cells increases over progression of disease, they may serve as biomarkers of autoimmune diabetes.


Journal of Immunology | 2011

An altered peptide of Chromogranin A is a potent antigen for the diabetogenic T cell clone BDC-2.5

Thomas Delong; Gene Barbour; Brenda Bradley; Nichole Reisdorph; Kathryn Haskins

Collaboration


Dive into the Gene Barbour's collaboration.

Top Co-Authors

Avatar

Kathryn Haskins

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Brenda Bradley

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rocky L. Baker

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Thomas Delong

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy A. Wiles

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Daniel Tonkin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael Armstrong

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Richard Reisdorph

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge