Brenda G. Clark
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brenda G. Clark.
Medical Physics | 1999
J. L. Robar; Brenda G. Clark
The measurement of stereotactic radiosurgical dose distributions requires an integrating, high-resolution dosimeter capable of providing a spatial map of absorbed dose. Although radiographic film is an accessible dosimeter fulfilling these criteria, for larger radiotherapy photon fields the sensitivity of film emulsion exhibits significant dependencies on both depth in phantom and field size. We have examined the variation of film sensitivity over the ranges of depths and field sizes of interest in radiosurgery with a 6 MV photon beam. While for large (20cm x 20cm) fields the potential error in dose due to the variation of the film response with depth reaches 15%, the corresponding maximum error for a 2.5 cm diameter radiosurgical beam is 1.5%. This uncertainty was observed to be comparable in magnitude to that produced by variation in processing conditions (1.1%) and by varying the orientation of the film plane relative to the beam central axis (1.5%). The dependence of emulsion sensitivity on field size has been observed to be negligible for fields ranging in diameter from 1.0 cm to 4.0 cm. The source of the dependence of film sensitivity has been illustrated by using an EGS4 Monte Carlo simulation for large fields to illustrate significant increases in the photon spectrum below 400 keV with depth in phantom. In contrast, relative increase of this low-energy component is negligible for radiosurgical photon fields.
Medical Physics | 2000
J. L. Robar; Brenda G. Clark
The trend toward conformal techniques in stereotactic radiosurgery necessitates an accurate and practical method for verification of irregular three-dimensional dose distributions. This work presents the design and evaluation of a phantom system facilitating the measurement of conformal dose distributions using one or more arrays of up to 20 radiographic films separated by 3.2 mm-thick tissue-equivalent spacers. Using Electron Gamma Shower version 4 (EGS4) Monte Carlo simulation, we show that for 6 MV radiosurgical photon beams this arrangement preserves tissue-equivalence to within 1%. The phantom provides 0.25 mm in-plane spatial resolution and multiple sets of films may be used to resample the dose volume in orthogonal planes. Dedicated software has been developed to automate the process of ordering and orienting of scanned film images, conversion of scanned pixel value to dose, resampling of one or more sets of film images and subsequent export of images in DICOM format for coregistration of planned and measured dose volumes. Calculated and measured isodose surfaces for a simple, circular-beam treatment agree to within 1.5 mm throughout the dose volume. For conformal radiosurgical applications, the measured and planned dose distributions agree to within the uncertainty of the manufacture of irregularly shaped collimators. The sensitivity of this technique to minor spatial inaccuracies in beam shaping is also demonstrated.
Journal of Applied Clinical Medical Physics | 2005
James L. Robar; Brenda G. Clark; Jason Schella; Chang Seon Kim
This work describes a rapid and objective method of determining repositioning error during the course of precision radiation therapy using off‐line CT imaging and automated mutual‐information image fusion. The technique eliminates the variability associated with manual identification of anatomical landmarks by observers. A phantom study was conducted to quantify the accuracy of the image co‐registration‐based analysis itself. For CT voxel dimensions of 0.65×0.65×1.0mm3, the method is shown to detect translations with an accuracy of 0.5 mm in the anterior‐posterior and lateral dimensions and 0.8 mm in the superior‐inferior dimension. Phantom rotation in the coronal plane was detected to within 0.5° of expected values. The analysis has been applied to eight radiotherapy patients at two independent clinics, each immobilized by the same system for cranial stereotactic radiotherapy and CT‐imaged once per week over the five‐ to six‐week course of treatment. Among all patients, the ranges of translation in the anterior‐posterior, lateral, and superior‐inferior dimensions were −0.91mmto0.77mm,−0.66mm to1.02mm, and −2.24mm to3.47mm, respectively. Considering all patients and CT scans, the standard deviations of translation were 0.42 mm, 0.47 mm, and 1.36 mm in the anterior‐posterior, lateral, and superior‐inferior dimensions, respectively. The ranges of patient rotation about the superior‐inferior, left‐right, and anterior‐posterior axes were −2.84to2.62°,−1.74°to1.96°, and −1.78°to1.42°, respectively. PACS numbers: 87.53.‐j, 87.53.Kn, 87.53.Ly, 87.53.Xd
Physics in Medicine and Biology | 2002
K Otto; Brenda G. Clark
Multileaf collimator (MLC) based intensity modulated radiation therapy (IMRT) techniques are well established but suffer several physical limitations. Dosimetric spatial resolution is limited by the MLC leaf width; interleaf leakage and tongue-and-groove effects degrade dosimetric accuracy and the range of leaf motion limits the maximum deliverable field size. Collimator rotation is used in standard radiation therapy to improve the conformity of the MLC shape to the target volume. Except for opposed orthogonal fields, collimator rotation has not been exploited in IMRT due to the complexity of deriving the MLC leaf configurations for rotated sub-fields. Here we report on a new way that MLC-based IMRT is delivered which incorporates collimator rotation, providing an extra degree of freedom in deriving leaf sequences for a desired fluence map. Specifically, we have developed a series of unique algorithms that are capable of determining rotated MLC segments. These IMRT fields may be delivered statically (with the collimator rotating to a new position in between sub-fields) or dynamically (with the collimator rotating and leaves moving simultaneously during irradiation). This introductory study provides an analysis of the rotating leaf motion calculation algorithms with focus on radiation efficiency, the range of collimator rotation and number of segments. We then evaluate the technique by characterizing the ability of the algorithms to generate rotating leaf sequences for desired fluence maps. Comparisons are also made between our method and conventional sliding window and step-and-shoot techniques. Results show improvements in spatial resolution, reduced interleaf effects and maximum deliverable field size over conventional techniques. Clinical application of these enhancements can be realized immediately with static rotational delivery although improved dosimetric modelling of the MLC will be required for dynamic delivery.
Medical Physics | 2002
K Otto; Brenda G. Clark; Calvin Huntzinger
Flexibility and complexity in patient treatment due to advances in radiotherapy techniques necessitates a simple method for evaluating spatial resolution capabilities of the dose delivery device. Our purpose in this investigation is to evaluate a model that describes the ability of a radiation therapy device to deliver a desired dose distribution. The model is based on linear systems theory and is analogous to methods used to describe resolution degradation in imaging systems. A qualitative analysis of spatial resolution degradation using the model is presented in the spatial and spatial frequency domains. The ability of the model to predict the effects of geometric dose conformity to treatment volumes is evaluated by varying multileaf collimator leaf width and magnitude of dose spreading. Dose distributions for three clinical treatment shapes, circular shapes of varying diameter and one intensity modulated shape are used in the evaluation. We show that the model accurately predicts the dependence of dose conformity on these parameters. The spatial resolution capabilities of different radiation therapy devices can be quantified using the model, providing a simple method for comparing different treatment machine characteristics. Also, as different treatment sites have different resolution requirements this model may be used to tailor machine characteristics to the specific site.
Journal of Applied Clinical Medical Physics | 2005
M. Peter Petric; Brenda G. Clark; James L. Robar
This study compared the clinical functionality of BrainSCAN (BrainLAB) and Helios (Eclipse, Varian) for intensity‐modulated radiation therapy (IMRT) treatment planning with the aim of identifying practical and technical issues. The study considered implementation and commissioning, dose optimization, and plan assessment. Both systems were commissioned for the same 6 MV photon beam equipped with a high‐resolution multileaf collimator (Varian Millennium 120 leaf). The software was applied to three test plans having identical imaging and contour data. Analysis considered 3D axial dose distributions, dose‐volume histograms, and monitor unit calculations. Each system requires somewhat different input data to characterize the beam prior to use, so the same data cannot be used for commissioning. In addition, whereas measured beam data was entered directly into Helios with minimal data processing, the BrainSCAN system required configured beam data to be sent to BrainLAB before clinical use. One key difference with respect to system commissioning was that BrainSCAN required high resolution data, which necessitated the use of detectors with small active volumes. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. In terms of functionality, the BrainSCAN system uses a dynamically penalized likelihood inverse planning algorithm and calculates four plans at once with various relative weighting of the planning target and organ‐at‐risk volumes. Helios uses a gradient algorithm that allows the user to make changes to some of the input parameters during optimization. An analysis of the dosimetry output shows that, although the systems are different in many respects, they are each capable of producing substantially equivalent dose plans in terms of target coverage and normal tissue sparing. PACS number: 87.53.Tf
Archive | 2001
James L. Robar; Brenda G. Clark
Archive | 2003
James L. Robar; Brenda G. Clark
Archive | 1999
James L. Robar; Brenda G. Clark
International Journal of Radiation Oncology Biology Physics | 2005
A Mestrovic; Brenda G. Clark