Brenda Lilly
Georgia Regents University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brenda Lilly.
Circulation Research | 2009
Hua Liu; Simone Kennard; Brenda Lilly
Endothelial cells and mural cells (smooth muscle cells, pericytes, or fibroblasts) are known to communicate with one another. Their interactions not only serve to support fully functional blood vessels but also can regulate vessel assembly and differentiation or maturation. In an effort to better understand the molecular components of this heterotypic interaction, we used a 3D model of angiogenesis and screened for genes, which were modulated by coculturing of these 2 different cell types. In doing so, we discovered that NOTCH3 is one gene whose expression is robustly induced in mural cells by coculturing with endothelial cells. Knockdown by small interfering RNA revealed that NOTCH3 is necessary for endothelial-dependent mural cell differentiation, whereas overexpression of NOTCH3 is sufficient to promote smooth muscle gene expression. Moreover, NOTCH3 contributes to the proangiogenic abilities of mural cells cocultured with endothelial cells. Interestingly, we found that the expression of NOTCH3 is dependent on Notch signaling, because the &ggr;-secretase inhibitor DAPT blocked its upregulation. Furthermore, in mural cells, a dominant-negative Mastermind-like1 construct inhibited NOTCH3 expression, and endothelial-expressed JAGGED1 was required for its induction. Additionally, we demonstrated that NOTCH3 could promote its own expression and that of JAGGED1 in mural cells. Taken together, these data provide a mechanism by which endothelial cells induce the differentiation of mural cells through activation and induction of NOTCH3. These findings also suggest that NOTCH3 has the capacity to maintain a differentiated phenotype through a positive-feedback loop that includes both autoregulation and JAGGED1 expression.
Circulation Research | 2010
Hua Liu; Wenbo Zhang; Simone Kennard; Ruth B. Caldwell; Brenda Lilly
Rationale: The heterotypic interactions of endothelial cells and mural cells (smooth muscle cells or pericytes) are crucial for assembly, maturation, and subsequent function of blood vessels. Yet, the molecular mechanisms underlying their association have not been fully defined. Objective: Our previous in vitro studies indicated that Notch3, which is expressed in mural cells, mediates these cell–cell interactions. To assess the significance of Notch3 on blood vessel formation in vivo, we investigated its role in retinal angiogenesis. Methods and Results: We show that Notch3-deficient mice exhibit reduced retinal vascularization, with diminished sprouting and vascular branching. Moreover, Notch3 deletion impairs mural cell investment, resulting in progressive loss of vessel coverage. In an oxygen-induced retinopathy model, we demonstrate that Notch3 is induced in hypoxia and interestingly, pathological neovascularization is decreased in retinas of Notch3-null mice. Analysis of oxygen-induced retinopathy mediators revealed that angiopoietin-2 expression is significantly reduced in the absence of Notch3. Furthermore, in vitro experiments showed that Notch3 is sufficient for angiopoietin-2 induction, and this expression is additionally enhanced in the presence of hypoxia-inducible factor 1&agr;. Conclusions: These results provide compelling evidence that Notch3 is important for the investment of mural cells and is a critical regulator of developmental and pathological blood vessel formation.
Journal of Biological Chemistry | 2008
Simone Kennard; Hua Liu; Brenda Lilly
Select signaling pathways have emerged as key players in regulating smooth muscle gene expression during myofibroblast and smooth muscle differentiation, an event that is important for wound healing and vascular remodeling. These include the transforming growth factor-β (TGF-β1) signaling cascade, which has been assigned multiple roles in these cells, and the Notch pathway. Notch family members have been implicated in governing cell fate in a variety of cells; however, the mechanisms are not well understood. We sought to explore how these prominent signaling mediators regulate differentiation, and in particular, how they might converge to control the transcription of smooth muscle genes. Using TGF-β1 to induce the differentiation of 10T1/2 fibroblasts, we investigated the specific function of Notch3. Overexpression of activated Notch3 caused repression of TGF-β1-induced smooth muscle-specific genes, whereas knockdown of Notch3 by small interfering RNA did not convincingly alter their expression. Surprisingly, the addition of TGF-β1 caused a significant decrease in Notch3 RNA and protein and a reciprocal increase in Hes1 gene transcription. The repression of Notch3 was mediated by SMAD activity and p38 mitogen-activated protein (MAP) kinase, whereas analysis of the Hes1 promoter revealed direct activation by Smad2 but not Smad3. Furthermore, the Hes1 repressor protein augmented Smad3 transactivation of the SM22α promoter. These results offer a novel mechanism by which TGF-β1 promotes the expression of smooth muscle differentiation genes through the inhibition of Notch3 and activation of Hes1.
Angiogenesis | 2008
Hua Liu; Bo Chen; Brenda Lilly
During wound repair, new blood vessels form in response to angiogenic signals emanating from injured tissues. Dermal fibroblasts are known to play an important role in wound healing, and have been linked to angiogenesis; therefore, we sought to understand the mechanisms through which these cells control blood vessel formation. Using a three-dimensional angiogenesis assay we demonstrate that dermal fibroblasts enhance the tube-forming potential of endothelial cells, and this augmentation is partially due to secreted factors present in conditioned media. Interestingly, we identified tissue inhibitor of metalloproteinase-1 (TIMP-1) as a factor uniquely secreted by fibroblasts, and addition of exogenous TIMP-1 increased vessel assembly. The enhancing activity of TIMP-1 was matrix metalloproteinase (MMP)-dependent, since a mutant version of TIMP-1 was unable to promote angiogenesis. Consistent with this, chemical inhibition of MMP-2/9 showed a similar increase in angiogenesis, and addition of exogenous MMP-9 blocked the enhancing effect of TIMP-1. We further demonstrated that TIMP-1 inhibits the production of tumstatin, an anti-angiogenic fragment of collagen IV that is produced by MMP-9 cleavage. Our results support the notion that dermal fibroblasts regulate blood vessel formation through multiple mediators, and provide novel evidence that fibroblast-derived TIMP-1 acts on endothelial cells in a pro-angiogenic capacity.
Journal of Molecular and Cellular Cardiology | 2013
Kevin Bosse; Chetan P. Hans; Ning Zhao; Sara N. Koenig; Nianyuan Huang; Anuradha Guggilam; Stephanie LaHaye; Ge Tao; Pamela A. Lucchesi; Joy Lincoln; Brenda Lilly; Vidu Garg
The mature aortic valve is composed of a structured trilaminar extracellular matrix that is interspersed with aortic valve interstitial cells (AVICs) and covered by endothelium. Dysfunction of the valvular endothelium initiates calcification of neighboring AVICs leading to calcific aortic valve disease (CAVD). The molecular mechanism by which endothelial cells communicate with AVICs and cause disease is not well understood. Using a co-culture assay, we show that endothelial cells secrete a signal to inhibit calcification of AVICs. Gain or loss of nitric oxide (NO) prevents or accelerates calcification of AVICs, respectively, suggesting that the endothelial cell-derived signal is NO. Overexpression of Notch1, which is genetically linked to human CAVD, retards the calcification of AVICs that occurs with NO inhibition. In AVICs, NO regulates the expression of Hey1, a downstream target of Notch1, and alters nuclear localization of Notch1 intracellular domain. Finally, Notch1 and NOS3 (endothelial NO synthase) display an in vivo genetic interaction critical for proper valve morphogenesis and the development of aortic valve disease. Our data suggests that endothelial cell-derived NO is a regulator of Notch1 signaling in AVICs in the development of the aortic valve and adult aortic valve disease.
Journal of Cellular Biochemistry | 2005
Katina M. Corley; Caroline J. Taylor; Brenda Lilly
Hypoxia promotes angiogenesis by modulating the transcriptional regulator hypoxia‐inducible factor 1α (HIF‐1α). HIF‐1α is a master regulator of the hypoxic response, and its proangiogenic activities include, but are not limited to, regulation of vascular endothelial growth factor (VEGF). The remodeling of the vasculature during angiogenesis requires an initial destabilization step, which facilitates endothelial sprouting, followed by vessel growth, and restabilization through investment of smooth muscle cells. The complex dynamics of hypoxia‐induced angiogenesis prompted us to investigate what aspects of this multi‐step process are regulated by HIF‐1α. To do so, we analyzed the molecular properties of aortic and coronary artery smooth muscle cells in response to forced expression of HIF‐1α, and by treatment with cobalt chloride, which mimics hypoxia. Our results demonstrate that HIF‐1α causes a marked reduction in the ability of smooth muscle cells to migrate and adhere to extracellular matrices. Analysis of focal adhesion proteins showed no significant difference in expression or localization of vinculin or focal adhesion kinase (FAK). However, investigation of FAK phosphorylation, a critical mediator of adhesion and migration, revealed tyrosine phosphorylation of FAK is diminished in the presence of HIF‐1α and cobalt chloride. These results indicate that during hypoxia‐induced vessel remodeling, HIF‐1α functions to dampen adhesion and migration of smooth muscle cells by modulating FAK activity. We suggest that HIF‐1α expression in smooth muscle cells may augment vessel sprouting by loosening smooth muscle cell attachments to the basement membrane and endothelial cells. J. Cell. Biochem.
Physiological Genomics | 2009
Brenda Lilly; Simone Kennard
Communication between endothelial and mural cells (smooth muscle cells, pericytes, and fibroblasts) can dictate blood vessel size and shape during angiogenesis, and control the functional aspects of mature blood vessels, by determining things such as contractile properties. The ability of these different cell types to regulate each others activities led us to ask how their interactions directly modulate gene expression. To address this, we utilized a three-dimensional model of angiogenesis and screened for genes whose expression was altered under coculture conditions. Using a BeadChip array, we identified 323 genes that were uniquely regulated when endothelial cells and mural cells (fibroblasts) were cultured together. Data mining tools revealed that differential expression of genes from the integrin, blood coagulation, and angiogenesis pathways were overrepresented in coculture conditions. Scans of the promoters of these differentially modulated genes identified a multitude of conserved C promoter binding factor (CBF)1/CSL elements, implicating Notch signaling in their regulation. Accordingly, inhibition of the Notch pathway with gamma-secretase inhibitor DAPT or NOTCH3-specific small interfering RNA blocked the coculture-induced regulation of several of these genes in fibroblasts. These data show that coculturing of endothelial cells and fibroblasts causes profound changes in gene expression and suggest that Notch signaling is a critical mediator of the resultant transcription.
Investigative Ophthalmology & Visual Science | 2009
Wenbo Zhang; Modesto Rojas; Brenda Lilly; Nai Tse Tsai; Tahira Lemtalsi; Gregory I. Liou; Robert W. Caldwell; Ruth B. Caldwell
PURPOSE CCL2 plays an important role in vascular inflammation by inducing leukocyte recruitment and activation. The authors had previously found that the blockade of NAD(P)H oxidase in turn blocks leukocyte adhesion to retinal vessels during diabetes and uveitis. In this study, the role of NAD(P)H oxidase in CCL2 production was assessed. METHODS Studies were performed in three mouse models with lipopolysaccharide (LPS)-induced uveitis, ischemic retinopathy, and streptozotocin diabetes and in cytokine- and LPS-treated cells. CCL2 mRNA and protein expression were measured by quantitative PCR and ELISA. NF-kappaB activity was detected by reporter gene assay. Kinase phosphorylation was determined by immunoblotting. RESULTS Expression of CCL2 was increased in the retinas of all three mouse models. The effect was strongest in the LPS-treated mice, with a peak mRNA increase at 3 hours. This increase was abrogated by administration of the NAD(P)H oxidase inhibitor apocynin. Apocynin also blocked CCL2 production in endothelial cells (ECs), retinal microglia, and Müller cells stimulated with TNF-alpha, VEGF, or LPS. Studies using human ECs demonstrated that TNF-alpha-induced CCL2 production was also inhibited by the NAD(P)H oxidase inhibitor DPI, the antioxidant N-acetyl-L-cysteine, or the superoxide scavenger Tiron, further indicating that inhibition occurs through the NAD(P)H/ROS pathway. Analysis of downstream signals showed that inhibition of NAD(P)H oxidase partially inhibited NF-kappaB activation but did not reduce CCL2 mRNA stability or prevent TNF-alpha-induced phosphorylation of p38MAPK. However, TNF-alpha-induced Akt phosphorylation was blocked, and inhibiting Akt dramatically decreased CCL2 production. CONCLUSIONS NAD(P)H oxidase activity is required for CCL2 production during retinal vascular inflammation. Akt and NF-kappaB are involved in this signaling pathway.
PLOS ONE | 2012
Qingqing Wang; Ning Zhao; Simone Kennard; Brenda Lilly
Notch signaling has been implicated in the regulation of smooth muscle differentiation, but the precise role of Notch receptors is ill defined. Although Notch3 receptor expression is high in smooth muscle, Notch3 mutant mice are viable and display only mild defects in vascular patterning and smooth muscle differentiation. Notch2 is also expressed in smooth muscle and Notch2 mutant mice show cardiovascular abnormalities indicative of smooth muscle defects. Together, these findings infer that Notch2 and Notch3 act together to govern vascular development and smooth muscle differentiation. To address this hypothesis, we characterized the phenotype of mice with a combined deficiency in Notch2 and Notch3. Our results show that when Notch2 and Notch3 genes are simultaneously disrupted, mice die in utero at mid-gestation due to severe vascular abnormalities. Assembly of the vascular network occurs normally as assessed by Pecam1 expression, however smooth muscle cells surrounding the vessels are grossly deficient leading to vascular collapse. In vitro analysis show that both Notch2 and Notch3 robustly activate smooth muscle differentiation genes, and Notch3, but not Notch2 is a target of Notch signaling. These data highlight the combined actions of the Notch receptors in the regulation of vascular development, and suggest that while these receptors exhibit compensatory roles in smooth muscle, their functions are not entirely overlapping.
Angiogenesis | 2006
Caroline J. Taylor; Kouros Motamed; Brenda Lilly
Angiogenesis, a critical process in both health and disease, is mediated by a number of signaling pathways. Although proangiogenic stimuli, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and the phorbol ester phorbol-12 myristate-13 acetate (PMA) are known to promote blood vessel formation, their downstream targets are ill defined. We sought to investigate the signaling pathways required for vessel assembly by utilizing a three-dimensional collagen matrix in which human umbilical vein endothelial cells (HUVECs) form tubular structures. Our data show that PMA is sufficient for the induction of angiogenesis, and that protein kinase C (PKC) is necessary for this process. Evaluation of PKC isoforms