Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chetan P. Hans is active.

Publication


Featured researches published by Chetan P. Hans.


Diabetes | 2010

Angiotensin I–Converting Enzyme Type 2 (ACE2) Gene Therapy Improves Glycemic Control in Diabetic Mice

Sharell M. Bindom; Chetan P. Hans; Huijing Xia; A. Hamid Boulares; Eric Lazartigues

OBJECTIVE Several clinical studies have shown the benefits of renin-angiotensin system (RAS) blockade in the development of diabetes, and a local RAS has been identified in pancreatic islets. Angiotensin I–converting enzyme (ACE)2, a new component of the RAS, has been identified in the pancreas, but its role in β-cell function remains unknown. Using 8- and 16-week-old obese db/db mice, we examined the ability of ACE2 to alter pancreatic β-cell function and thereby modulate hyperglycemia. RESEARCH DESIGN AND METHODS Both db/db and nondiabetic lean control (db/m) mice were infected with an adenovirus expressing human ACE2 (Ad-hACE2-eGFP) or the control virus (Ad-eGFP) via injection into the pancreas. Glycemia and β-cell function were assessed 1 week later at the peak of viral expression. RESULTS In 8-week-old db/db mice, Ad-hACE2-eGFP significantly improved fasting glycemia, enhanced intraperitoneal glucose tolerance, increased islet insulin content and β-cell proliferation, and reduced β-cell apoptosis compared with Ad-eGFP. ACE2 overexpression had no effect on insulin sensitivity in comparison with Ad-eGFP treatment in diabetic mice. Angiotensin-(1–7) receptor blockade by d-Ala7–Ang-(1-7) prevented the ACE2-mediated improvements in intraperitoneal glucose tolerance, glycemia, and islet function and also impaired insulin sensitivity in both Ad-hACE2-eGFP– and Ad-eGFP–treated db/db mice. d-Ala7–Ang-(1-7) had no effect on db/m mice. In 16-week-old diabetic mice, Ad-hACE2-eGFP treatment improved fasting blood glucose but had no effect on any of the other parameters. CONCLUSIONS These findings identify ACE2 as a novel target for the prevention of β-cell dysfunction and apoptosis occurring in type 2 diabetes.


Journal of Immunology | 2010

Poly(ADP-Ribose) Polymerase-1 Is a Determining Factor in Crm1-Mediated Nuclear Export and Retention of p65 NF-κB upon TLR4 Stimulation

Mourad Zerfaoui; Youssef Errami; Amarjit S. Naura; Yasuhiro Suzuki; Hogyoung Kim; Jihang Ju; Tao Liu; Chetan P. Hans; Jong G. Kim; Zakaria Y. Abd Elmageed; Shahriar Koochekpour; Andrew D. Catling; A. Hamid Boulares

The role of NF-κB in the expression of inflammatory genes and its participation in the overall inflammatory process of chronic diseases and acute tissue injury are well established. We and others have demonstrated a critical involvement of poly(ADP-ribose) polymerase (PARP)-1 during inflammation, in part, through its relationship with NF-κB. However, the mechanism by which PARP-1 affects NF-κB activation has been elusive. In this study, we show that PARP-1 inhibition by gene knockout, knockdown, or pharmacologic blockade prevented p65 NF-κB nuclear translocation in smooth muscle cells upon TLR4 stimulation, NF-κB DNA-binding activity, and subsequent inducible NO synthase and ICAM-1 expression. Such defects were reversed by reconstitution of PARP-1 expression. PARP-1 was dispensable for LPS-induced IκBα phosphorylation and subsequent degradation but was required for p65 NF-κB phosphorylation. A perinuclear p65 NF-κB localization in LPS-treated PARP-1−/− cells was associated with an export rather an import defect. Indeed, whereas PARP-1 deficiency did not alter expression of importin α3 and importin α4 and their cytosolic localization, the cytosolic levels of exportin (Crm)-1 were increased. Crm1 inhibition promoted p65 NF-κB nuclear accumulation as well as reversed LPS-induced p65 NF-κB phosphorylation and inducible NO synthase and ICAM-1 expression. Interestingly, p65 NF-κB poly(ADP-ribosyl)ation decreased its interaction with Crm1 in vitro. Pharmacologic inhibition of PARP-1 increased p65 NF-κB–Crm1 interaction in LPS-treated smooth muscle cells. These results suggest that p65 NF-κB poly(ADP-ribosyl)ation may be a critical determinant for the interaction with Crm1 and its nuclear retention upon TLR4 stimulation. These results provide novel insights into the mechanism by which PARP-1 promotes NF-κB nuclear retention, which ultimately can influence NF-κB–dependent gene regulation.


Circulation | 2007

Poly(ADP-Ribose) Polymerase Inhibition Reduces Atherosclerotic Plaque Size and Promotes Factors of Plaque Stability in Apolipoprotein E–Deficient Mice Effects on Macrophage Recruitment, Nuclear Factor-κB Nuclear Translocation, and Foam Cell Death

Karine Oumouna-Benachour; Chetan P. Hans; Yasuhiro Suzuki; Amarjit S. Naura; Rahul Datta; Souad Belmadani; Kenneth B. Fallon; Cooper Woods; A. Hamid Boulares

Background— Poly(ADP-ribose) polymerase (PARP) was suggested to play a role in endothelial dysfunction that is associated with a number of cardiovascular diseases. We hypothesized that PARP may play an important role in atherogenesis and that its inhibition may attenuate atherosclerotic plaque development in an experimental model of atherosclerosis. Methods and Results— Using a mouse (apolipoprotein E [ApoE]−/−) model of high-fat diet–induced atherosclerosis, we demonstrate an association between cell death and oxidative stress–associated DNA damage and PARP activation within atherosclerotic plaques. PARP inhibition by thieno[2,3-c]isoquinolin-5-one reduced plaque number and size and altered structural composition of plaques in these animals without affecting sera lipid contents. These results were corroborated genetically with the use of ApoE−/− mice that are heterozygous for PARP-1. PARP inhibition promoted an increase in collagen content, potentially through an increase in tissue inhibitor of metalloproteinase-2, and transmigration of smooth muscle cells to intima of atherosclerotic plaques as well as a decrease in monocyte chemotactic protein-1 production, all of which are markers of plaque stability. In PARP-1−/− macrophages, monocyte chemotactic protein-1 expression was severely inhibited because of a defective nuclear factor-&kgr;B nuclear translocation in response to lipopolysaccharide. Furthermore, PARP-1 gene deletion not only conferred protection to foam cells against H2O2-induced death but also switched the mode of death from necrosis to apoptosis. Conclusions— Our results suggest that PARP inhibition interferes with plaque development and may promote plaque stability, possibly through a reduction in inflammatory factors and cellular changes related to plaque dynamics. PARP inhibition may prove beneficial for the treatment of atherosclerosis.


Journal of Immunology | 2006

Poly(ADP-ribose) polymerase-1 inhibition prevents eosinophil recruitment by modulating Th2 cytokines in a murine model of allergic airway inflammation: a potential specific effect on IL-5.

Oumouna Mustapha; Rahul Datta; Karine Oumouna-Benachour; Yasuhiro Suzuki; Chetan P. Hans; Kametra Matthews; Kenneth B. Fallon; Hamid Boulares

We recently used a murine model of allergic airway inflammation to show that poly(ADP-ribose) polymerase-1 (PARP-1) plays an important role in the pathogenesis of asthma-related lung inflammation. In this study, we show that PARP-1 inhibition, by a novel inhibitor (TIQ-A) or by gene deletion, prevented eosinophilic infiltration into the airways of OVA-challenged mice. Such impairment of eosinophil recruitment appeared to take place after IgE production. OVA challenge of wild-type mice resulted in a significant increase in IL-4, IL-5, IL-10, IL-13, and GM-CSF secretions. Although IL-4 production was moderately affected in OVA-challenged PARP-1−/− mice, the production of IL-5, IL-10, IL-13, and GM-CSF was completely inhibited in ex vivo OVA-challenged lung cells derived from these animals. A single TIQ-A injection before OVA challenge in wild-type mice mimicked the latter effects. The marked effect PARP-1 inhibition exerted on mucus production corroborated the effects observed on the Th2 response. Although PARP-1 inhibition by gene knockout increased the production of the Th1 cytokines IL-2 and IL-12, the inhibition by TIQ-A exerted no effect on these two cytokines. The failure of lung cells derived from OVA-challenged PARP-1−/− mice to synthesize GM-CSF, a key cytokine in eosinophil recruitment, was reestablished by replenishment of IL-5. Furthermore, intranasal administration of IL-5 restored the impairment of eosinophil recruitment and mucus production in OVA-challenged PARP-1−/− mice. The replenishment of either IL-4 or IgE, however, did not result in such phenotype reversals. Altogether, these results suggest that PARP-1 plays a critical role in eosinophil recruitment by specifically regulating the cascade leading to IL-5 production.


Journal of Immunology | 2010

Requirement for Inducible Nitric Oxide Synthase in Chronic Allergen Exposure-Induced Pulmonary Fibrosis but Not Inflammation

Naura As; Mourad Zerfaoui; Hogyoung Kim; Zakaria Y. Abd Elmageed; Paulo C. Rodriguez; Chetan P. Hans; Jihang Ju; Youssef Errami; Jiwon Park; Augusto C. Ochoa; A. Hamid Boulares

The role of inducible NO synthase (iNOS) in allergic airway inflammation remains elusive. We tested the hypothesis that iNOS plays different roles during acute versus chronic airway inflammation. Acute and chronic mouse models of OVA-induced airway inflammation were used to conduct the study. We showed that iNOS deletion was associated with a reduction in eosinophilia, mucus hypersecretion, and IL-5 and IL-13 production upon the acute protocol. Such protection was completely abolished upon the chronic protocol. Interestingly, pulmonary fibrosis observed in wild-type mice under the chronic protocol was completely absent in iNOS−/− mice despite persistent IL-5 and IL-13 production, suggesting that these cytokines were insufficient for pulmonary fibrosis. Such protection was associated with reduced collagen synthesis and indirect but severe TGF-β modulation as confirmed using primary lung smooth muscle cells. Although activation of matrix metalloproteinase-2/-9 exhibited little change, the large tissue inhibitor of metalloproteinase-2 (TIMP-2) increase detected in wild-type mice was absent in the iNOS−/− counterparts. The regulatory effect of iNOS on TIMP-2 may be mediated by peroxynitrite, as the latter reversed TIMP-2 expression in iNOS−/− lung smooth muscle cells and fibroblasts, suggesting that the iNOS–TIMP-2 link may explain the protective effect of iNOS-knockout against pulmonary fibrosis. Analysis of lung sections from chronically OVA-exposed iNOS−/− mice revealed evidence of residual but significant protein nitration, prevalent oxidative DNA damage, and poly(ADP-ribose) polymerase-1 activation. Such tissue damage, inflammatory cell recruitment, and mucus hypersecretion may be associated with substantial arginase expression and activity. The results in this study exemplify the complexity of the role of iNOS in asthma and the preservation of its potential as a therapeutic a target.


Clinical & Experimental Allergy | 2008

Post-allergen challenge inhibition of poly(ADP-ribose) polymerase harbors therapeutic potential for treatment of allergic airway inflammation

Amarjit S. Naura; Chetan P. Hans; Mourad Zerfaoui; D. You; S. A. Cormier; Mustapha Oumouna; A. H. Boulares

Background Identifying therapeutic drugs that block the release or effects of T‐helper type 2 (Th2) cytokines after allergen exposure is an important goal for the treatment of allergic inflammatory diseases including asthma. We recently showed, using a murine model of allergic airway inflammation, that poly(ADP‐ribose) polymerase (PARP) plays an important role in the pathogenesis of asthma‐related lung inflammation. PARP inhibition, by single injection of a novel inhibitor, thieno[2,3‐c]isoquinolin‐5‐one (TIQ‐A), before ovalbumin (OVA) challenge, prevented airway eosinophilia in C57BL/6 mice with concomitant suppression of Th2 cytokine production and mucus secretion.


European Respiratory Journal | 2008

Reciprocal regulation of iNOS and PARP-1 during allergen-induced eosinophilia

Amarjit S. Naura; Rahul Datta; Chetan P. Hans; Mourad Zerfaoui; Bashir M. Rezk; Youssef Errami; Mustapha Oumouna; Khalid Matrougui; A. H. Boulares

Inducible nitric oxide synthase (iNOS) inhibition was recently shown to exert no effect on allergen challenge in human asthma, raising serious concerns about the role of the protein in the disease. The present study investigated the role of iNOS in ovalbumin-induced eosinophilia from the perspective of its relationship with poly(ADP-ribose) polymerase-1 (PARP-1) and oxidative DNA damage. A mouse model of ovalbumin-induced eosinophilia was used to conduct the studies. iNOS-associated protein nitration and tissue damage were partially responsible for allergen-induced eosinophilia. iNOS expression was required for oxidative DNA damage and PARP-1 activation upon allergen challenge. PARP-1 was required for iNOS expression and protein nitration, and this requirement was connected to nuclear factor-κB. PARP-1 was an important substrate for iNOS-associated by-products after ovalbumin-challenge. PARP-1 nitration blocked its poly(ADP-ribosyl)ation activity. Interleukin-5 re-establishment in ovalbumin-exposed PARP-1-/- mice reversed eosinophilia and partial mucus production without a reversal of iNOS expression, concomitant protein nitration or associated DNA damage. The present results demonstrate a reciprocal relationship between inducible nitric oxide synthase and poly(ADP-ribose) polymerase-1 and suggest that expression of inducible nitric oxide synthase may be dispensable for eosinophilia after interleukin-5 production. Inducible nitric oxide synthase may be required for oxidative DNA damage and full manifestation of mucus production. Such dispensability may explain, in part, the reported ineffectiveness of inducible nitric oxide synthase inhibition in preventing allergen-induced inflammation in humans.


PLOS ONE | 2009

Protective Effects of PARP-1 Knockout on Dyslipidemia-Induced Autonomic and Vascular Dysfunction in ApoE−/− Mice: Effects on eNOS and Oxidative Stress

Chetan P. Hans; Yumei Feng; Amarjit S. Naura; Mourad Zerfaoui; Bashir M. Rezk; Huijing Xia; Alan D. Kaye; Khalid Matrougui; Eric Lazartigues; A. Hamid Boulares

The aims of this study were to investigate the role of poly(ADP-ribose) polymerase (PARP)-1 in dyslipidemia-associated vascular dysfunction as well as autonomic nervous system dysregulation. Apolipoprotein (ApoE)−/− mice fed a high-fat diet were used as a model of atherosclerosis. Vascular and autonomic functions were measured in conscious mice using telemetry. The study revealed that PARP-1 plays an important role in dyslipidemia-associated vascular and autonomic dysfunction. Inhibition of this enzyme by gene knockout partially restored baroreflex sensitivity in ApoE−/− mice without affecting baseline heart-rate and arterial pressure, and also improved heart-rate responses following selective blockade of the autonomic nervous system. The protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction was associated with preservation of eNOS activity. Dyslipidemia induced PARP-1 activation was accompanied by oxidative tissue damage, as evidenced by increased expression of iNOS and subsequent protein nitration. PARP-1 gene deletion reversed these effects, suggesting that PARP-1 may contribute to vascular and autonomic pathologies by promoting oxidative tissue injury. Further, inhibition of this oxidative damage may account for protective effects of PARP-1 gene deletion on vascular and autonomic functions. This study demonstrates that PARP-1 participates in dyslipidemia-mediated dysregulation of the autonomic nervous system and that PARP-1 gene deletion normalizes autonomic and vascular dysfunctions. Maintenance of eNOS activity may be associated with the protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction.


Journal of Pharmacology and Experimental Therapeutics | 2009

Thieno[2,3-c]Isoquinolin-5-one, a Potent Poly(ADP-Ribose) Polymerase Inhibitor, Promotes Atherosclerotic Plaque Regression in High-Fat Diet-Fed Apolipoprotein E-Deficient Mice: Effects on Inflammatory Markers and Lipid Content

Chetan P. Hans; Mourad Zerfaoui; Amarjit S. Naura; Dana Troxclair; Jack P. Strong; Khalid Matrougui; A. Hamid Boulares

We recently showed that poly(ADP-ribose) polymerase (PARP) is activated within atherosclerotic plaques in an animal model of atherosclerosis. Pharmacological inhibition of PARP or reduced expression in heterozygous animals interferes with atherogenesis and may promote factors of plaque stability, possibly reflecting changes in inflammatory and cellular factors consistent with plaque stability. The current study addresses the hypothesis that pharmacological inhibition of PARP promotes atherosclerotic plaque regression. Using a high-fat diet-induced atherosclerosis apolipoprotein E(-/-) mouse model, we demonstrate that administration of the potent PARP inhibitor, thieno[2,3-c]isoquinolin-5-one (TIQ-A), when combined with a regular diet regimen during treatment, induced regression of established plaques. Plaque regression was associated with a reduction in total cholesterol and low-density lipoproteins. Furthermore, plaques of TIQ-A-treated mice were highly enriched with collagen and smooth muscle cells, displayed thick fibrous caps, and exhibited a marked reduction in CD68-positive macrophage recruitment and associated foam cell presence. These changes correlated with a significant decrease in expression of monocyte chemoattractant protein-1 and intercellular cell adhesion molecule-1, potentially as a result of a robust reduction in tumor necrosis factor expression. The PARP inhibitor appeared to affect cholesterol metabolism by affecting acyl-coenzymeA/cholesterol acyltransferase-1 expression but exerted no effect on cholesterol influx or efflux as assessed by an examination of the ATP-binding cassette transporter-1 and the scavenger receptor-A expression levels in the different experimental groups. In accordance, PARP inhibition may prove beneficial not only in preventing atherogenesis but also in promoting regression of preexisting plaques.


Cardiovascular Research | 2008

Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability

Chetan P. Hans; Mourad Zerfaoui; Amarjit S. Naura; Andrew D. Catling; A. Hamid Boulares

AIMS The aim of this study was to take a combination of animal and cell culture approaches to examine the individual responses of vascular cells to varying inflammatory factors in order to gain insights on the mechanism(s) by which poly(ADP-ribose) polymerase (PARP) inhibition promotes factors of plaque stability. METHODS AND RESULTS Apolipoprotein (ApoE(-/-)) mice fed a high-fat diet were used as a model of atherosclerosis. Primary endothelial cells, smooth muscle cells (SMCs), and ex-vivo generated foam cells (FCs) were used in our in vitro studies. PARP inhibition significantly decreased the markers of oxidative stress and caspase-3 activation and increased smooth muscle actin within plaques from ApoE(-/-) mice fed a high-fat diet. PARP inhibition protected against apoptosis and/or necrosis in SMCs and endothelial cells in response to H(2)O(2) or tumour necrosis factor (TNF). Remarkably, PARP inhibition in FCs resulted in significant sensitization to 7-ketocholesterol (7-KC) by increasing cellular-toxic-free cholesterol, potentially through a down-regulation of acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) expression. 7-KC induced necrosis exclusively in endothelial cells, which was, surprisingly, unaffected by PARP inhibition indicating that PARP inhibition does not prevent all forms of necrotic cell death. In SMCs, PARP-1 inhibition by gene deletion conferred protection against 7-KC or TNF, potentially by reducing caspase-3-like activation, preventing induction of c-Jun N-terminal protein kinase phosphorylation, and inducing extracellular signal-regulated kinase phosphorylation independently of PARP classical enzymatic activity. CONCLUSIONS These data present PARP-1 as an important player in the death of cells constituting atherosclerotic plaques contributing to plaque dynamics. PARP inhibition may be a protective, a neutral, or a sensitizing factor. Additionally, PARP-1 may be a novel factor that can alter lipid metabolism. These novel functions of PARP not only challenge the current understanding of the role of the enzyme in cell death but also provide insights on the intricate contribution of PARP in cellular responses to predominant inflammatory factors within atherosclerotic plaques, presenting additional evidence for the viability of PARP inhibition as a therapeutic strategy for atherosclerosis.

Collaboration


Dive into the Chetan P. Hans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack P. Strong

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Kenneth B. Fallon

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Khalid Matrougui

LSU Health Sciences Center New Orleans

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vidu Garg

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Hogyoung Kim

LSU Health Sciences Center New Orleans

View shared research outputs
Top Co-Authors

Avatar

Arthur W. Zieske

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Augusto C. Ochoa

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge