Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brendon M. Baker is active.

Publication


Featured researches published by Brendon M. Baker.


Nature Materials | 2012

Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues

Jordan S. Miller; Kelly R. Stevens; Michael T. Yang; Brendon M. Baker; Duc-Huy T. Nguyen; Daniel M. Cohen; Esteban Toro; Alice A. Chen; Peter A. Galie; Xiang-Qing Yu; Ritika R. Chaturvedi; Sangeeta N. Bhatia; Christopher S. Chen

In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core [1]. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture [2–4]. Here, we 3D printed rigid filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks which could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization, and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices (ECMs), and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core.


Journal of Cell Science | 2012

Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues

Brendon M. Baker; Christopher S. Chen

Summary Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which – in turn – regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems.


Biomaterials | 2008

The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers

Brendon M. Baker; Albert O. Gee; Robert B. Metter; Ashwin Nathan; Ross A. Marklein; Jason A. Burdick; Robert L. Mauck

Aligned electrospun scaffolds are promising tools for engineering fibrous musculoskeletal tissues, as they reproduce the mechanical anisotropy of these tissues and can direct ordered neo-tissue formation. However, these scaffolds suffer from a slow cellular infiltration rate, likely due in part to their dense fiber packing. We hypothesized that cell ingress could be expedited in scaffolds by increasing porosity, while at the same time preserving overall scaffold anisotropy. To test this hypothesis, poly(epsilon-caprolactone) (a slow-degrading polyester) and poly(ethylene oxide) (a water-soluble polymer) were co-electrospun from two separate spinnerets to form dual-polymer composite fiber-aligned scaffolds. Adjusting fabrication parameters produced aligned scaffolds with a full range of sacrificial (PEO) fiber contents. Tensile properties of scaffolds were functions of the ratio of PCL to PEO in the composite scaffolds, and were altered in a predictable fashion with removal of the PEO component. When seeded with mesenchymal stem cells (MSCs), increases in the starting sacrificial fraction (and porosity) improved cell infiltration and distribution after three weeks in culture. In pure PCL scaffolds, cells lined the scaffold periphery, while scaffolds containing >50% sacrificial PEO content had cells present throughout the scaffold. These findings indicate that cell infiltration can be expedited in dense fibrous assemblies with the removal of sacrificial fibers. This strategy may enhance in vitro and in vivo formation and maturation of functional constructs for fibrous tissue engineering.


Nature Materials | 2009

Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus

Nandan L. Nerurkar; Brendon M. Baker; Sounok Sen; Emily E. Wible; Dawn M. Elliott; Robert L. Mauck

Successful engineering of load-bearing tissues requires recapitulation of their complex mechanical functions. Given the intimate relationship between function and form, biomimetic materials that replicate anatomic form are of great interest for tissue engineering applications. However, for complex tissues such as the annulus fibrosus, scaffolds have failed to capture their multi-scale structural hierarchy. Consequently, engineered tissues have yet to reach functional equivalence with their native counterparts. Here we present a novel strategy for annulus fibrosus tissue engineering that replicates this hierarchy with anisotropic nanofibrous laminates seeded with mesenchymal stem cells. These scaffolds directed the deposition of organized, collagen-rich extracellular matrix that mimicked the angle-ply, multi-lamellar architecture and achieved mechanical parity with native tissue after 10 weeks of in vitro culture. Further, we identified a novel role for inter-lamellar shearing in reinforcing the tensile response of biologic laminates, a mechanism that has not previously been considered for these tissues.


Nature Materials | 2015

Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

Brendon M. Baker; Britta Trappmann; William Y. Wang; Mahmut Selman Sakar; Iris L. Kim; Vivek B. Shenoy; Jason A. Burdick; Christopher S. Chen

To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices (ECM), we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibers, and bulk contraction of the material. While increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation, increasing fiber stiffness instead suppressed spreading and proliferation depending on network architecture. Lower fiber stiffness permitted active cellular forces to recruit nearby fibers, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signaling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fiber recruitment as a novel mechanism by which cells probe and respond to mechanics in fibrillar matrices.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Endothelial Cell Sensing of Flow Direction

Chong Wang; Brendon M. Baker; Christopher S. Chen; Martin A. Schwartz

Objective—Atherosclerosis-prone regions of arteries are characterized by complex flow patterns where the magnitude of shear stress is low and direction rapidly changes, termed disturbed flow. How endothelial cells sense flow direction and how it impacts inflammatory effects of disturbed flow are unknown. We therefore aimed to understand how endothelial cells respond to changes in flow direction. Approach and Results—Using a recently developed flow system capable of changing flow direction to any angle, we show that responses of aligned endothelial cells are determined by flow direction relative to their morphological and cytoskeletal axis. Activation of the atheroprotective endothelial nitric oxide synthase pathway is maximal at 180° and undetectable at 90°, whereas activation of proinflammatory nuclear factor-&kgr;B is maximal at 90° and undetectable at 180°. Similar effects were observed in randomly oriented cells in naive monolayers subjected to onset of shear. Cells aligned on micropatterned substrates subjected to oscillatory flow were also examined. In this system, parallel flow preferentially activated endothelial nitric oxide synthase and production of nitric oxide, whereas perpendicular flow preferentially activated reactive oxygen production and nuclear factor-&kgr;B. Conclusions—These data show that the angle between flow and the cell axis defined by their shape and cytoskeleton determines endothelial cell responses. The data also strongly suggest that the inability of cells to align in low and oscillatory flow is a key determinant of the resultant inflammatory activation.


Biomaterials | 2013

Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues

Iris L. Kim; Sudhir Khetan; Brendon M. Baker; Christopher S. Chen; Jason A. Burdick

Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation

Brendon M. Baker; Roshan P. Shah; Amy M. Silverstein; John L. Esterhai; Jason A. Burdick; Robert L. Mauck

The fibrous tissues prevalent throughout the body possess an ordered structure that underlies their refined and robust mechanical properties. Engineered replacements will require recapitulation of this exquisite architecture in three dimensions. Aligned nanofibrous scaffolds can dictate cell and matrix organization; however, their widespread application has been hindered by poor cell infiltration due to the tight packing of fibers during fabrication. Here, we develop and validate an enabling technology in which tunable composite nanofibrous scaffolds are produced to provide instruction without impediment. Composites were formed containing two distinct fiber fractions: slow-degrading poly(ε-caprolactone) and water-soluble, sacrificial poly(ethylene oxide), which can be selectively removed to increase pore size. Increasing the initial fraction of sacrificial poly(ethylene oxide) fibers enhanced cell infiltration and improved matrix distribution. Despite the removal of >50% of the initial fibers, the remaining scaffold provided sufficient instruction to align cells and direct the formation of a highly organized ECM across multiple length scales, which in turn led to pronounced increases in the tensile properties of the engineered constructs (nearly matching native tissue). This approach transforms what is an interesting surface phenomenon (cells on top of nanofibrous mats) into a method by which functional, 3D tissues (>1 mm thick) can be formed, both in vitro and in vivo. As such, this work represents a marked advance in the engineering of load-bearing fibrous tissues, and will find widespread applications in regenerative medicine.


Expert Review of Medical Devices | 2009

New Directions in Nanofibrous Scaffolds for Soft Tissue Engineering and Regeneration

Brendon M. Baker; Andrew M. Handorf; Lara C. Ionescu; Wan-Ju Li; Robert L. Mauck

This review focuses on the role of nanostructure and nanoscale materials for tissue engineering applications. We detail a scaffold production method (electrospinning) for the production of nanofiber-based scaffolds that can approximate many critical features of the normal cellular microenvironment, and so foster and direct tissue formation. Further, we describe new and emerging methods to increase the applicability of these scaffolds for in vitro and in vivo application. This discussion includes a focus on methods to further functionalize scaffolds to promote cell infiltration, methods to tune scaffold mechanics to meet in vivo demands and methods to control the release of pharmaceuticals and other biologic agents to modulate the wound environment and foster tissue regeneration. This review provides a perspective on the state-of-the-art production, application and functionalization of these unique nanofibrous structures, and outlines future directions in this growing field.


Osteoarthritis and Cartilage | 2009

Tissue engineering with meniscus cells derived from surgical debris.

Brendon M. Baker; Ashwin Nathan; G. Russell Huffman; Robert L. Mauck

OBJECTIVE Injuries to the avascular regions of the meniscus fail to heal and so are treated by resection of the damaged tissue. This alleviates symptoms but fails to restore normal load transmission in the knee. Tissue engineering functional meniscus constructs for re-implantation may improve tissue repair. While numerous studies have developed scaffolds for meniscus repair, the most appropriate autologous cell source remains to be determined. In this study, we hypothesized that the debris generated from common meniscectomy procedures would possess cells with potential for forming replacement tissue. We also hypothesized that donor age and the disease status would influence the ability of derived cells to generate functional, fibrocartilaginous matrix. METHODS Meniscus derived cells (MDCs) were isolated from waste tissue of 10 human donors (seven partial meniscectomies and three total knee arthroplasties) ranging in age from 18 to 84 years. MDCs were expanded in monolayer culture through passage 2 and seeded onto fiber-aligned biodegradable nanofibrous scaffolds and cultured in a chemically defined media. Mechanical properties, biochemical content, and histological features were evaluated over 10 weeks of culture. RESULTS Results demonstrated that cells from every donor contributed to increasing biochemical content and mechanical properties of engineered constructs. Significant variability was observed in outcome parameters (cell infiltration, proteoglycan and collagen content, and mechanical properties) amongst donors, but these variations did not correlate with patient age or disease condition. Strong correlations were observed between the amount of collagen deposition within the construct and the tensile properties achieved. In scaffolds seeded with particularly robust cells, construct tensile moduli approached maxima of approximately 40 MPa over the 10-week culture period. CONCLUSIONS This study demonstrates that cells derived from surgical debris are a potent cell source for engineered meniscus constructs. Results further show that robust growth is possible in MDCs from middle-aged and elderly patients, highlighting the potential for therapeutic intervention using autologous cells.

Collaboration


Dive into the Brendon M. Baker's collaboration.

Top Co-Authors

Avatar

Robert L. Mauck

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason A. Burdick

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashwin Nathan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Albert O. Gee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Alice H. Huang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge