Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brenna J. Hill is active.

Publication


Featured researches published by Brenna J. Hill.


Nature | 2005

Massive infection and loss of memory CD4 + T cells in multiple tissues during acute SIV infection

Joseph J. Mattapallil; Brenna J. Hill; Yoshiaki Nishimura; Malcolm A. Martin; Mario Roederer

It has recently been established that both acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are accompanied by a dramatic and selective loss of memory CD4+ T cells predominantly from the mucosal surfaces. The mechanism underlying this depletion of memory CD4+ T cells (that is, T-helper cells specific to previously encountered pathogens) has not been defined. Using highly sensitive, quantitative polymerase chain reaction together with precise sorting of different subsets of CD4+ T cells in various tissues, we show that this loss is explained by a massive infection of memory CD4+ T cells by the virus. Specifically, 30–60% of CD4+ memory T cells throughout the body are infected by SIV at the peak of infection, and most of these infected cells disappear within four days. Furthermore, our data demonstrate that the depletion of memory CD4+ T cells occurs to a similar extent in all tissues. As a consequence, over one-half of all memory CD4+ T cells in SIV-infected macaques are destroyed directly by viral infection during the acute phase—an insult that certainly heralds subsequent immunodeficiency. Our findings point to the importance of reducing the cell-associated viral load during acute infection through therapeutic or vaccination strategies.


Nature | 2002

HIV preferentially infects HIV-specific CD4+ T cells

Jason M. Brenchley; Michael R. Betts; David R. Ambrozak; Brenna J. Hill; Yukari Okamoto; Joseph P. Casazza; Janaki Kuruppu; Kevin J. Kunstman; Steven M. Wolinsky; Zvi Grossman; Mark Dybul; Annette Oxenius; David A. Price; Mark Connors; Richard A. Koup

HIV infection is associated with the progressive loss of CD4+ T cells through their destruction or decreased production. A central, yet unresolved issue of HIV disease is the mechanism for this loss, and in particular whether HIV-specific CD4+ T cells are preferentially affected. Here we show that HIV-specific memory CD4+ T cells in infected individuals contain more HIV viral DNA than other memory CD4+ T cells, at all stages of HIV disease. Additionally, following viral rebound during interruption of antiretroviral therapy, the frequency of HIV viral DNA in the HIV-specific pool of memory CD4+ T cells increases to a greater extent than in memory CD4+ T cells of other specificities. These findings show that HIV-specific CD4+ T cells are preferentially infected by HIV in vivo. This provides a potential mechanism to explain the loss of HIV-specific CD4+ T-cell responses, and consequently the loss of immunological control of HIV replication. Furthermore, the phenomenon of HIV specifically infecting the very cells that respond to it adds a cautionary note to the practice of structured therapy interruption.


Nature | 2008

Impaired T H 17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome

Joshua D. Milner; Jason M. Brenchley; Arian Laurence; Alexandra F. Freeman; Brenna J. Hill; Kevin M. Elias; Yuka Kanno; Christine Spalding; Houda Elloumi; Michelle L. Paulson; Joie Davis; Amy P. Hsu; Ava I. Asher; John J. O'Shea; Steven M. Holland; William E. Paul

The autosomal dominant hyper-IgE syndrome (HIES, ‘Job’s syndrome’) is characterized by recurrent and often severe pulmonary infections, pneumatoceles, eczema, staphylococcal abscesses, mucocutaneous candidiasis, and abnormalities of bone and connective tissue. Mutations presumed to underlie HIES have recently been identified in stat3, the gene encoding STAT3 (signal transducer and activator of transcription 3) (refs 3, 4). Although impaired production of interferon-γ and tumour-necrosis factor by T cells, diminished memory T-cell populations, decreased delayed-type-hypersensitivity responses and decreased in vitro lymphoproliferation in response to specific antigens have variably been described, specific immunological abnormalities that can explain the unique susceptibility to particular infections seen in HIES have not yet been defined. Here we show that interleukin (IL)-17 production by T cells is absent in HIES individuals. We observed that ex vivo T cells from subjects with HIES failed to produce IL-17, but not IL-2, tumour-necrosis factor or interferon-γ, on mitogenic stimulation with staphylococcal enterotoxin B or on antigenic stimulation with Candida albicans or streptokinase. Purified naive T cells were unable to differentiate into IL-17-producing (TH17) T helper cells in vitro and had lower expression of retinoid-related orphan receptor (ROR)-γt, which is consistent with a crucial role for STAT3 signalling in the generation of TH17 cells. TH17 cells have emerged as an important subset of helper T cells that are believed to be critical in the clearance of fungal and extracellular bacterial infections. Thus, our data suggest that the inability to produce TH17 cells is a mechanism underlying the susceptibility to the recurrent infections commonly seen in HIES.


Nature Medicine | 2009

HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation

Nicolas Chomont; Mohamed El-Far; Petronela Ancuta; Lydie Trautmann; Francesco A. Procopio; Bader Yassine-Diab; Geneviève Boucher; Mohamed Rachid Boulassel; Georges Ghattas; Jason M. Brenchley; Timothy W. Schacker; Brenna J. Hill; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

HIV persists in a reservoir of latently infected CD4+ T cells in individuals treated with highly active antiretroviral therapy (HAART). Here we identify central memory (TCM) and transitional memory (TTM) CD4+ T cells as the major cellular reservoirs for HIV and find that viral persistence is ensured by two different mechanisms. HIV primarily persists in TCM cells in subjects showing reconstitution of the CD4+ compartment upon HAART. This reservoir is maintained through T cell survival and low-level antigen-driven proliferation and is slowly depleted with time. In contrast, proviral DNA is preferentially detected in TTM cells from aviremic individuals with low CD4+ counts and higher amounts of interleukin-7–mediated homeostatic proliferation, a mechanism that ensures the persistence of these cells. Our results suggest that viral eradication might be achieved through the combined use of strategic interventions targeting viral replication and, as in cancer, drugs that interfere with the self renewal and persistence of proliferating memory T cells.


Nature Medicine | 2005

Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells

Hua Zhang; Kevin S. Chua; Martin Guimond; Veena Kapoor; Margaret Brown; Thomas A. Fleisher; Lauren M. Long; Donna Bernstein; Brenna J. Hill; Jay A. Berzofsky; Charles S. Carter; Elizabeth J. Read; Lee J. Helman; Crystal L. Mackall

CD4+CD25+ regulatory T (Treg) cells have a crucial role in maintaining immune tolerance. Mice and humans born lacking Treg cells develop severe autoimmune disease, and depletion of Treg cells in lymphopenic mice induces autoimmunity. Interleukin (IL)-2 signaling is required for thymic development, peripheral expansion and suppressive activity of Treg cells. Animals lacking IL-2 die of autoimmunity, which is prevented by administration of IL-2–responsive Treg cells. In light of the emerging evidence that one of the primary physiologic roles of IL-2 is to generate and maintain Treg cells, the question arises as to the effects of IL-2 therapy on them. We monitored Treg cells during immune reconstitution in individuals with cancer who did or did not receive IL-2 therapy. CD4+CD25hi cells underwent homeostatic peripheral expansion during immune reconstitution, and in lymphopenic individuals receiving IL-2, the Treg cell compartment was markedly increased. Mouse studies showed that IL-2 therapy induced expansion of existent Treg cells in normal hosts, and IL-2–induced Treg cell expansion was further augmented by lymphopenia. On a per-cell basis, Treg cells generated by IL-2 therapy expressed similar levels of FOXP3 and had similar potency for suppression compared to Treg cells present in normal hosts. These studies suggest that IL-2 and lymphopenia are primary modulators of CD4+CD25+ Treg cell homeostasis.


Journal of Experimental Medicine | 2005

Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses

David A. Price; Jason M. Brenchley; Laura E. Ruff; Michael R. Betts; Brenna J. Hill; Mario Roederer; Richard A. Koup; Steven A. Migueles; Emma Gostick; Linda Wooldridge; Andrew K. Sewell; Mark Connors

The forces that govern clonal selection during the genesis and maintenance of specific T cell responses are complex, but amenable to decryption by interrogation of constituent clonotypes within the antigen-experienced T cell pools. Here, we used point-mutated peptide–major histocompatibility complex class I (pMHCI) antigens, unbiased TCRB gene usage analysis, and polychromatic flow cytometry to probe directly ex vivo the clonal architecture of antigen-specific CD8+ T cell populations under conditions of persistent exposure to structurally stable virus-derived epitopes. During chronic infection with cytomegalovirus and Epstein-Barr virus, CD8+ T cell responses to immunodominant viral antigens were oligoclonal, highly skewed, and exhibited diverse clonotypic configurations; TCRB CDR3 sequence analysis indicated positive selection at the protein level. Dominant clonotypes demonstrated high intrinsic antigen avidity, defined strictly as a physical parameter, and were preferentially driven toward terminal differentiation in phenotypically heterogeneous populations. In contrast, subdominant clonotypes were characterized by lower intrinsic avidities and proportionately greater dependency on the pMHCI–CD8 interaction for antigen uptake and functional sensitivity. These findings provide evidence that interclonal competition for antigen operates in human T cell populations, while preferential CD8 coreceptor compensation mitigates this process to maintain clonotypic diversity. Vaccine strategies that reconstruct these biological processes could generate T cell populations that mediate optimal delivery of antiviral effector function.


Journal of Virology | 2004

T-Cell Subsets That Harbor Human Immunodeficiency Virus (HIV) In Vivo: Implications for HIV Pathogenesis

Jason M. Brenchley; Brenna J. Hill; David R. Ambrozak; David A. Price; Francisco J. Guenaga; Joseph P. Casazza; Janaki Kuruppu; Javaidia Yazdani; Stephen A. Migueles; Mark Connors; Mario Roederer; Richard A. Koup

ABSTRACT Identification of T-cell subsets that are infected in vivo is essential to understanding the pathogenesis of human immunodeficiency virus (HIV) disease; however, this goal has been beset with technical challenges. Here, we used polychromatic flow cytometry to sort multiple T-cell subsets to 99.8% purity, followed by quantitative PCR to quantify HIV gag DNA directly ex vivo. We show that resting memory CD4+ T cells are the predominantly infected cells but that terminally differentiated memory CD4+ T cells contain 10-fold fewer copies of HIV DNA. Memory CD8+ T cells can also be infected upon upregulation of CD4; however, this is infrequent and HIV-specific CD8+ T cells are not infected preferentially. Naïve CD4+ T-cell infection is rare and principally confined to those peripheral T cells that have proliferated. Furthermore, the virus is essentially absent from naïve CD8+ T cells, suggesting that the thymus is not a major source of HIV-infected T cells in the periphery. These data illuminate the underlying mechanisms that distort T-cell homeostasis in HIV infection.


Journal of Experimental Medicine | 2006

Acquisition of direct antiviral effector functions by CMV-specific CD4+T lymphocytes with cellular maturation

Joseph P. Casazza; Michael R. Betts; David A. Price; Melissa L. Precopio; Laura E. Ruff; Jason M. Brenchley; Brenna J. Hill; Mario Roederer; Richard A. Koup

The role of CD4+ T cells in the control of persistent viral infections beyond the provision of cognate help remains unclear. We used polychromatic flow cytometry to evaluate the production of the cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-2, the chemokine macrophage inflammatory protein (MIP)-1β, and surface mobilization of the degranulation marker CD107a by CD4+ T cells in response to stimulation with cytomegalovirus (CMV)-specific major histocompatibility complex class II peptide epitopes. Surface expression of CD45RO, CD27, and CD57 on responding cells was used to classify CD4+ T cell maturation. The functional profile of virus-specific CD4+ T cells in chronic CMV infection was unique compared with that observed in other viral infections. Salient features of this profile were: (a) the simultaneous production of MIP-1β, TNF-α, and IFN-γ in the absence of IL-2; and (b) direct cytolytic activity associated with surface mobilization of CD107a and intracellular expression of perforin and granzymes. This polyfunctional profile was associated with a terminally differentiated phenotype that was not characterized by a distinct clonotypic composition. Thus, mature CMV-specific CD4+ T cells exhibit distinct functional properties reminiscent of antiviral CD8+ T lymphocytes.


Nature Immunology | 2002

Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo.

Chang-You Wu; Kirman; Masashi Rotte; Davey Df; Perfetto Sp; Rhee Eg; Freidag Bl; Brenna J. Hill; Robert A. Seder

We studied here the long-term maintenance of distinct populations of T helper type 1 (TH1)-lineage cells in vivo and found that effector TH1 cells, defined by their secretion of interferon-γ (IFN-γ), are short-lived and do not efficiently develop into long-term memory TH1 cells. In contrast, a population of activated TH1-lineage cells that did not secrete IFN-γ after primary antigenic stimulation persisted for several months in vivo and developed the capacity to secrete IFN-γ upon subsequent stimulation. These data suggest that a linear differentiation pathway, as defined by the transition from IFN-γ–producing to resting memory cells, is relatively limited in vivo and support a revised model for TH1 memory differentiation.


Nature Medicine | 2010

Programmed death-1–induced interleukin-10 production by monocytes impairs CD4 + T cell activation during HIV infection

Elias A. Said; Franck P. Dupuy; Lydie Trautmann; Yuwei Zhang; Yu Shi; Mohamed El-Far; Brenna J. Hill; Alessandra Noto; Petronela Ancuta; Yoav Peretz; Simone Fonseca; Julien van Grevenynghe; Mohamed Rachid Boulassel; Julie Bruneau; Naglaa H. Shoukry; Jean-Pierre Routy; Elias K. Haddad; Rafick Pierre Sekaly

Viral replication and microbial translocation from the gut to the blood during HIV infection lead to hyperimmune activation, which contributes to the decline in CD4+ T cell numbers during HIV infection. Programmed death-1 (PD-1) and interleukin-10 (IL-10) are both upregulated during HIV infection. Blocking interactions between PD-1 and programmed death ligand-1 (PD-L1) and between IL-10 and IL-10 receptor (IL-10R) results in viral clearance and improves T cell function in animal models of chronic viral infections. Here we show that high amounts of microbial products and inflammatory cytokines in the plasma of HIV-infected subjects lead to upregulation of PD-1 expression on monocytes that correlates with high plasma concentrations of IL-10. Triggering of PD-1 expressed on monocytes by PD-L1 expressed on various cell types induced IL-10 production and led to reversible CD4+ T cell dysfunction. We describe a new function for PD-1 whereby microbial products inhibit T cell expansion and function by upregulating PD-1 levels and IL-10 production by monocytes after binding of PD-1 by PD-L1.

Collaboration


Dive into the Brenna J. Hill's collaboration.

Top Co-Authors

Avatar

Richard A. Koup

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mario Roederer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Casazza

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David R. Ambrozak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Betts

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. John Barrett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Keyvan Keyvanfar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nancy Hensel

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge