Breno Valentim Nogueira
Universidade Federal do Espírito Santo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Breno Valentim Nogueira.
Lipids in Health and Disease | 2010
Thiago M.C. Pereira; Breno Valentim Nogueira; Leandro Cf Lima; Marcella L. Porto; Jose Airton Arruda; Elisardo C. Vasquez; Silvana S. Meyrelles
BackgroundAlthough advanced age is considered a risk factor for several diseases, the impact of gender on age-associated cardiovascular diseases, such as atherosclerotic processes and valvular diseases, remains not completely clarified. The present study was designed to assess aortic valve morphology and function and vascular damage in elderly using the apolipoprotein E knockout (ApoE KO) mouse. Our hypothesis was that advanced age-related cardiovascular changes are aggravated in atherosclerotic male mice.MethodsThe grade (0 to 4) of aortic regurgitation was evaluated through angiography. In addition, vascular lipid deposition and senescence were evaluated through histochemical analyses in aged male and female ApoE KO mice, and the results were compared to wild-type C57BL/6J (C57) mice.ResultsAortic regurgitation was observed in 92% of the male ApoE KO mice and 100% of the male C57 mice. Comparatively, in age-matched female ApoE KO and C57 mice, aortic regurgitation was observed in a proportion of 58% and 53%, respectively. Histological analysis of the aorta showed an outward (positive) remodeling in ApoE KO mice (female: 1.86 ± 0.15; male: 1.89 ± 0.68) using C57 groups as reference values. Histochemical evaluation of the aorta showed lipid deposition and vascular senescence only in the ApoE KO group, which were more pronounced in male mice.ConclusionThe data show that male gender contributes to the progression of aortic regurgitation and that hypercholesterolemia and male gender additively contribute to the occurrence of lipid deposition and vascular senescence in elderly mice.
Lipids in Health and Disease | 2011
Marcella L. Porto; Leandro Cf Lima; Thiago Mc Pereira; Breno Valentim Nogueira; Clarissa Loureiro Tonini; Bianca P. Campagnaro; Silvana S. Meyrelles; Elisardo C. Vasquez
BackgroundRecent studies have highlighted the potential of cell therapy for atherosclerosis. The aim of this study was to evaluate the effects of mononuclear cell (MNC) therapy on the development of atherosclerotic lesions in the apolipoprotein E knockout (apoE KO) mouse.MethodsWe investigated vascular lipid deposition, vascular remodeling, oxidative stress, and endothelial nitric oxide synthase (eNOS) expression in apoE KO mice treated with spleen MNCs isolated from lacZ transgenic mice (apoE KO-MNC) for 8 weeks compared to untreated control mice (apoE KO).ResultsHistological analysis of aortas showed a significant reduction in the lipid deposition area in apoE KO-MNC mice compared to apoE KO mice (0.051 ± 0.004 vs 0.117 ± 0.016 mm2, respectively, p < 0.01). In addition, vessel morphometry revealed that MNC therapy prevented the outward (positive) remodeling in apoE KO mice that is normally observed (apoE KO-MNC: 0.98 ± 0.07 vs apoE KO: 1.37 ± 0.09), using wild-type mice (C57BL/6J) as a reference. ApoE KO-MNC mice also have reduced production of superoxide anions and increased eNOS expression compared to apoE KO mice. Finally, immunohistochemistry analysis revealed a homing of endothelial progenitor cells (EPCs) in the aortas of apoE KO-MNC mice.ConclusionMNC therapy attenuates the progression of atherosclerosis in the aortas of apoE KO mice. Our data provide evidence that the mechanism by which this attenuation occurs includes the homing of EPCs, a decrease in oxidative stress and an upregulation of eNOS expression.
Anais Brasileiros De Dermatologia | 2011
Cíntia Helena Santuzzi; Hygor Franca Buss; Diego França Pedrosa; Martha Oliveira Vieira Moniz Freire; Breno Valentim Nogueira; Washington Luiz Silva Gonçalves
BACKGROUND Low level laser therapy and cyclooxygenase-2 (ICOX2) selective inhibitors have been widely used to modulate inflammatory response; however, their effect on wound reepithelialization are not well understood. OBJECTIVE To evaluate the isolated and combined effects of low level laser therapy and ICOX2 in the reepithelization of skin incisional wounds in mice. METHODS We induced a 1-cm wound on the back of each mouse, which were divided into four groups (N = 20): control, laser therapy, treated with celecoxib and combined therapy. The animals in the celecoxib and combined therapy groups were treated with celecoxib for 10 days before skin incision. The experimental wounds were irradiated with He-Ne low power laser (632nm, dose: 4J/cm2) in scanning for 12 seconds during three consecutive days in the laser therapy and combined therapy groups. The animals were sacrificed 3 days after surgery. Samples of the wounds were collected and stained (Massons Trichrome) for histomorphometric analysis. RESULTS Both the laser therapy group and the celecoxib group showed an increase in skin reepithelialization compared to the control group; however, the combined therapy group showed no differences. As for keratinization, the laser therapy and combined therapy groups showed a reduction in keratinocytes compared with the control group. CONCLUSION The results show that the use of low level laser therapy and ICOX2 in isolation increases epithelial cells, but only low level laser therapy reduced skin keratinocytes. The combined treatment restores innate epithelialization and decreases keratinization in spite of accelerating wound contraction with improvement in the organization of the wound in the skin of mice.
DNA and Cell Biology | 2013
Bianca P. Campagnaro; Clarissa Loureiro Tonini; Luciano M. Doche; Breno Valentim Nogueira; Elisardo C. Vasquez; Silvana S. Meyrelles
Angiotensin II (Ang II), which plays a pivotal role in the pathophysiology of the two-kidney, one-clip (2K1C) Goldblatt hypertension, has been associated with augmented generation of reactive oxygen species (ROS) in some cells and tissues. In the present study, we evaluated the influence of 2K1C hypertension on oxidative stress, DNA fragmentation, and apoptosis of bone marrow (BM) cells. Two weeks after the renal artery clipping or Sham operation, flow cytometry analysis showed a higher production of superoxide anions (approximately sixfold) and hydrogen peroxide (approximately twofold) in 2K1C hypertensive than in Sham normotensive mice. 2K1C mice also showed an augmented DNA fragmentation (54%) and apoptotic cells (21%). Our data show that the 2K1C renovascular hypertension is characterized by an increased production of ROS, DNA damage, and apoptosis of BM, which is a fundamental source of the cells involved in tissue repair.
Lipids in Health and Disease | 2012
Leandro Cf Lima; Marcella L. Porto; Bianca P. Campagnaro; Clarissa Loureiro Tonini; Breno Valentim Nogueira; Thiago Mc Pereira; Elisardo C. Vasquez; Silvana S. Meyrelles
BackgroundStem/progenitor cell-based therapy has successfully been used as a novel therapeutic strategy for vascular diseases triggered by endothelial dysfunction. The aim of this study was to investigate the effects of mononuclear cell (MNC) therapy in situ on carotid cuff-induced occlusive thrombus in the apolipoprotein E knockout (apoE-/-) mouse.MethodsSpleen-derived MNCs were isolated from green fluorescent protein (GFP)-transgenic mice for cell treatment. A cuff-induced thrombus model was produced by placing a nonconstrictive silastic collar around the left common carotid artery in 20-week-old female apoE-/- mice. After 10 days, the cuff was removed, and the animals received in situ MNCs (Cuff-MNC) or vehicle (Cuff-Vehicle) and were compared with sham-operated animals (Sham).ResultsThe histological analysis showed that the MNC treatment reverted occlusive thrombus formation compared to the vehicle and the vessel lumen area to that observed in the Sham group (MNC, 50 ± 4; Vehicle, 20 ± 4; Sham, 55 ± 2 x103 μm2; p < 0.01). The animals that underwent the carotid cuff placement developed compensatory vessel enlargement, which was reduced by the MNC therapy. In addition, the treatment was able to reduce superoxide anion production, which likely contributed to the reduced apoptosis that was observed. Lastly, the immunofluorescence analysis revealed the presence of endothelial progenitor cells (EPCs) in the carotid endothelia of the apoE-/- mice.ConclusionIn situ short-term MNC therapy was able to revert cuff-induced occlusive thrombi in the carotid arteries of apoE-/- mice, possibly through the homing of EPCs, reduction of oxidative stress and decreased apoptosis.
Brazilian Journal of Medical and Biological Research | 2009
A.L.N. Gadioli; Breno Valentim Nogueira; R.M.P. Arruda; R.B. Pereira; Silvana S. Meyrelles; J.A. Arruda; Elisardo C. Vasquez
The objective of the present study was to assess the effects of the immunosuppressant rapamycin (Rapamune, Sirolimus) on both resistance vessel responsiveness and atherosclerosis in apolipoprotein E-deficient 8-week-old male mice fed a normal rodent diet. Norepinephrine (NE)-induced vasoconstriction, acetylcholine (ACh)- and sodium nitroprusside (SNP)-induced vasorelaxation of isolated mesenteric bed, and atherosclerotic lesions were evaluated. After 12 weeks of orally administered rapamycin (5 mg.kg-1.day-1, N = 9) and compared with untreated (control, N = 9) animals, rapamycin treatment did not modify either NE-induced vasoconstriction (maximal response: 114 +/- 4 vs 124 +/- 10 mmHg, respectively) or ACh- (maximal response: 51 +/- 8 vs 53 +/- 5%, respectively) and SNP-induced vasorelaxation (maximal response: 73 +/- 6 vs 74 +/- 6%, respectively) of the isolated vascular mesenteric bed. Despite increased total cholesterol in treated mice (982 +/- 59 vs 722 +/- 49 mg/dL, P < 0.01), lipid deposition on the aorta wall vessel was significantly less in rapamycin-treated animals (37 +/- 12 vs 68 +/- 8 microm(2) x 10(3)). These results indicate that orally administered rapamycin is effective in attenuating the progression of atherosclerotic plaque without affecting the responsiveness of resistance vessels, supporting the idea that this immunosuppressant agent might be of potential benefit against atherosclerosis in patients undergoing therapy.
Journal of Biomedical Science | 2014
Ednildes de Almeida Olympio Rua; Marcella L. Porto; Jean Pierre Louzada Ramos; Breno Valentim Nogueira; Silvana S. Meyrelles; Elisardo C. Vasquez; Thiago Melo Costa Pereira
BackgroundAlthough cigarette smoke is known to be a complex mixture of over 4000 substances that can lead to damage through active or passive smoking, its mechanisms and biochemical consequences in pregnancy and neonates are not yet fully understood. Therefore, in the present study, we propose to study the impact of smoking during gestation on the viability of blood mononuclear cells (MNC) from umbilical cords of newborns to assess the degree of oxidative stress and cell viability. After childbirth, the cord blood and the umbilical cord were immediately collected in public hospitals in Greater Vitoria, ES, Brazil. Flow cytometry was used to analyze the cord blood followed by biochemical and histological tests to analyze possible changes in the umbilical cord.ResultsPregnant smokers had a reduction of MNC viability from the umbilical cord (10%), an increase in the production of reactive oxygen species (ROS) and an increase in cell apoptosis (~2-fold) compared to pregnant non-smokers. In the umbilical cord, it was observed an increase of advanced oxidation protein products - AOPP (~2.5-fold) and a loss of the typical architecture and disposition of endothelial cells from the umbilical artery.ConclusionsThese data suggest that maternal cigarette smoking during pregnancy (even in small amounts) may compromise the viability of MNC cells and damage the umbilical cord structure, possibly by excessive ROS bioavailability.
Cellular Physiology and Biochemistry | 2012
Breno Valentim Nogueira; Zaira Palomino; Marcella L. Porto; Camille M. Balarini; Thiago Melo Costa Pereira; Marcelo Perim Baldo; Dulce Elena Casarini; Silvana S. Meyrelles; Elisardo C. Vasquez
Background: G-CSF is a critical regulator of hematopoietic cell proliferation, differentiation and survival. It has been reported that G-CSF attenuates renal injury during acute ischemia-reperfusion. In this study we evaluated the effects of G-CSF on the renal and cardiovascular systems of 2K1C hypertensive mice. Methods: Male C57BL/6 mice were subjected to left renal artery clipping (2K1C) or sham operation and were then administered G-CSF (100 µg/kg/day) or vehicle for 14 days. Results: Arterial pressure was higher in 2K1C + vehicle animals than in 2K1C + G-CSF (150±5 vs. 129±2 mmHg, p<0.01, n=8). Plasma angiotensin I, II and 1-7 concentrations were significantly increased in 2K1C + Vehicle when compared to the normotensive Sham group. G-CSF prevented the increase of these vasoactive peptides. The clipped kidney/contralateral kidney weight ratio showed a less atrophy of the ischemic kidney in the treated group (0.50±0.02 vs. 0.66±0.01, p<0.05). The infarction area in the clipped kidney was completely prevented in 7 out of 8 2K1C + G-CSF mice. Administration of G-CSF protected the clipped kidney from apoptosis. Conclusion: Our data indicate that G-CSF prevents kidney infarction and markedly attenuates the increases in plasma angiotensin levels and hypertension in 2K1C mice, reinforcing the protective effect of G-CSF on kidney ischemia.
International Journal of Hypertension | 2013
Bianca P. Campagnaro; Clarissa Loureiro Tonini; Breno Valentim Nogueira; Dulce Elena Casarini; Elisardo C. Vasquez; Silvana S. Meyrelles
It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage.
Journal of Diabetes and Its Complications | 2016
Layla Mendonça Lírio; Ludimila Forechi; Tadeu Ériton Caliman Zanardo; Hiago Martins Batista; Eduardo Frizera Meira; Breno Valentim Nogueira; José Geraldo Mill; Marcelo Perim Baldo
BACKGROUND The growing epidemic of metabolic syndrome has been related to the increased use of fructose by the food industry. In fact, the use of fructose as an ingredient has increased in sweetened beverages, such as sodas and juices. We thus hypothesized that fructose intake by hypertensive rats would have a worse prognosis in developing metabolic disorder and non-alcoholic fatty liver disease. METHODS Male Wistar and SHR rats aged 6weeks were given water or fructose (10%) for 6weeks. Blood glucose was measured every two weeks, and insulin and glucose sensitivity tests were assessed at the end of the follow-up. Systolic blood pressure was measure by plethysmography. Lean mass and abdominal fat mass were collected and weighed. Liver tissue was analyzed to determine interstitial fat deposition and fibrosis. RESULTS Fasting glucose increased in animals that underwent a high fructose intake, independent of blood pressure levels. Also, insulin resistance was observed in normotensive and mostly in hypertensive rats after fructose intake. Fructose intake caused a 2.5-fold increase in triglycerides levels in both groups. Fructose intake did not change lean mass. However, we found that fructose intake significantly increased abdominal fat mass deposition in normotensive but not in hypertensive rats. Nevertheless, chronic fructose intake only increased fat deposition and fibrosis in the liver in hypertensive rats. CONCLUSIONS We demonstrated that, in normotensive and hypertensive rats, fructose intake increased triglycerides and abdominal fat deposition, and caused insulin resistance. However, hypertensive rats that underwent fructose intake also developed interstitial fat deposition and fibrosis in liver.
Collaboration
Dive into the Breno Valentim Nogueira's collaboration.
Marco Cesar Cunegundes Guimarães
Universidade Federal do Espírito Santo
View shared research outputs