Brent Gowen
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brent Gowen.
Quarterly Reviews of Biophysics | 2000
Marin van Heel; Brent Gowen; Rishi Matadeen; Elena V. Orlova; Robert D. Finn; Tillmann Pape; Dana Cohen; Holger Stark; Ralf Schmidt; Michael Schatz; Ardan Patwardhan
4. Single particles and angular reconstitution 323 4.1 Preliminary filtering and centring of data 323 4.2 Alignments using correlation functions 324 4.3 Choice of first reference images 324 4.4 Multi-reference alignment of data 325 4.5 MSA eigenvector/eigenvalue data compression 328 4.6 MSA classification 330 4.7 Euler angle determination (‘ angular reconstitution ’) 332 4.8 Sinograms and sinogram correlation functions 332 4.9 Exploiting symmetry 335 4.10 Three-dimensional reconstruction 337 4.11 Euler angles using anchor sets 339 4.12 Iterative refinements 339
Molecular Cell | 2000
Xiaodong Zhang; Anthony Shaw; Paul A. Bates; Richard Newman; Brent Gowen; Elena V. Orlova; Michael A. Gorman; Hisao Kondo; Pawel Dokurno; John M. Lally; Gordon A. Leonard; Hemmo Meyer; Marin van Heel; Paul S. Freemont
p97, an abundant hexameric ATPase of the AAA family, is involved in homotypic membrane fusion. It is thought to disassemble SNARE complexes formed during the process of membrane fusion. Here, we report two structures: a crystal structure of the N-terminal and D1 ATPase domains of murine p97 at 2.9 A resolution, and a cryoelectron microscopy structure of full-length rat p97 at 18 A resolution. Together, these structures show that the D1 and D2 hexamers pack in a tail-to-tail arrangement, and that the N domain is flexible. A comparison with NSF D2 (ATP complex) reveals possible conformational changes induced by ATP hydrolysis. Given the D1 and D2 packing arrangement, we propose a ratchet mechanism for p97 during its ATP hydrolysis cycle.
Cell | 2001
Neil A. Ranson; George W. Farr; Alan M. Roseman; Brent Gowen; Wayne A. Fenton; Arthur L. Horwich; Helen R. Saibil
The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring. The GroEL-ATP structure, determined by cryo-EM and atomic structure fitting, shows that the intermediate domains rotate downward, switching their intersubunit salt bridge contacts from substrate binding to ATP binding domains. These observations, together with the effects of ATP binding to a GroEL-GroES-ADP complex, suggest structural models for the ATP-induced reduction in affinity for polypeptide and for cooperativity. The model for cooperativity, based on switching of intersubunit salt bridge interactions around the GroEL ring, may provide general insight into cooperativity in other ring complexes and molecular machines.
Current Biology | 1997
Stephen D. Fuller; Thomas Wilk; Brent Gowen; Hans-Georg Kräusslich; Volker M. Vogt
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) is the causative agent of AIDS and the subject of intense study. The immature HIV-1 particle is traditionally described as having a well ordered, icosahedral structure made up of uncleaved Gag protein surrounded by a lipid bilayer containing envelope proteins. Expression of the Gag protein in eukaryotic cells leads to the budding of membranous virus-like particles (VLPs). RESULTS We have used cryo-electron microscopy of VLPs from insect cells and lightly fixed, immature HIV-1 particles from human lymphocytes to determine their organization. Both types of particle were heterogeneous in size, varying in diameter from 1200-2600 A. Larger particles appeared to be broken into semi-spherical sectors, each having a radius of curvature of approximately 750 A. No evidence of icosahedral symmetry was found, but local order was evidenced by small arrays of Gag protein that formed facets within the curved sectors. A consistent 270 A radial density was seen, which included a 70 A wide low density feature corresponding to the carboxy-terminal portion of the membrane attached matrix protein and the amino-terminal portion of the capsid protein. CONCLUSIONS Immature HIV-1 particles and VLPs both have a multi-sector structure characterized, not by an icosahedral organization, but by local order in which the structures of the matrix and capsid regions of Gag change upon cleavage. We propose a model in which lateral interactions between Gag protein molecules yields arrays that are organized into sectors for budding by RNA.
Molecular Cell | 2000
Erika J. Mancini; Mairi Clarke; Brent Gowen; Twan Rutten; Stephen D. Fuller
Semliki Forest virus serves as a paradigm for membrane fusion and assembly. Our icosahedral reconstruction combined 5276 particle images from 48 cryo-electron micrographs and determined the virion structure to 9 A resolution. The improved resolution of this map reveals an N-terminal arm linking capsid subunits and defines the spike-capsid interaction sites. It illustrates the paired helical nature of the transmembrane segments and the elongated structures connecting them to the spike projecting domains. A 10 A diameter density in the fusion protein lines the cavity at the center of the spike. These clearly visible features combine with the variation in order between the layers to provide a framework for understanding the structural changes during the life cycle of an enveloped virus.
Journal of Virology | 2001
Thomas Wilk; Ingolf Gross; Brent Gowen; Twan Rutten; F. Haas; Reinhold Welker; Hans-Georg Kräusslich; Pierre Boulanger; Stephen D. Fuller
ABSTRACT Immature retrovirus particles contain radially arranged Gag polyproteins in which the N termini lie at the membrane and the C termini extend toward the particles center. We related image features to the polyprotein domain structure by combining mutagenesis with cryoelectron microscopy and image analysis. The matrix (MA) domain appears as a thin layer tightly associated with the inner face of the viral membrane, separated from the capsid (CA) layer by a low-density region corresponding to its C terminus. Deletion of the entire p6 domain has no effect on the width or spacing of the density layers, suggesting that p6 is not ordered in immature human immunodeficiency virus type 1 (HIV-1). In vitro assembly of a recombinant Gag polyprotein containing only capsid (CA) and nucleocapsid (NC) domains results in the formation of nonenveloped spherical particles which display two layers with density matching that of the CA-NC portion of immature HIV-1 Gag particles. Authentic, immature HIV-1 displays additional surface features and an increased density between the lipid bilayers which reflect the presence of gp41. The other internal features match those of virus-like particles.
Nature Structural & Molecular Biology | 2000
Jon Nield; Elena V. Orlova; Edward P. Morris; Brent Gowen; Marin van Heel; James Barber
Here we describe the first 3D structure of the photosystem II (PSII) supercomplex of higher plants, constructed by single particle analysis of images obtained by cryoelectron microscopy. This large multisubunit membrane protein complex functions to absorb light energy and catalyze the oxidation of water and reduction of plastoquinone. The resolution of the 3D structure is 24 Å and emphasizes the dimeric nature of the supercomplex. The extrinsic proteins of the oxygen-evolving complex (OEC) are readily observed as a tetrameric cluster bound to the lumenal surface. By considering higher resolution data, obtained from electron crystallography, it has been possible to relate the binding sites of the OEC proteins with the underlying intrinsic membrane subunits of the photochemical reaction center core. The model suggests that the 33 kDa OEC protein is located towards the CP47/D2 side of the reaction center but is also positioned over the C-terminal helices of the D1 protein including its CD lumenal loop. In contrast, the model predicts that the 23/17 kDa OEC proteins are positioned at the N-terminus of the D1 protein incorporating the AB lumenal loop of this protein and two other unidentified transmembrane helices. Overall the 3D model represents a significant step forward in revealing the structure of the photosynthetic OEC whose activity is required to sustain the aerobic atmosphere on our planet.
The EMBO Journal | 2003
Elena V. Orlova; Brent Gowen; Anja Dröge; Asita C. Stiege; Frank Weise; Rudi Lurz; Marin van Heel; Paulo Tavares
In tailed bacteriophages and herpes viruses, the viral DNA is packaged through the portal protein channel. Channel closure is essential to prevent DNA release after packaging. Here we present the connector structure from bacteriophage SPP1 using cryo‐electron microscopy and single particle analysis. The multiprotein complex comprises the portal protein gp6 and the head completion proteins gp15 and gp16. Although we show that gp6 in the connector has a fold similar to that of the isolated portal protein, we observe conformational changes in the region of gp6 exposed to the DNA‐packaging ATPase and to gp15. This reorganization does not cause closure of the channel. The connector channel traverses the full height of gp6 and gp15, but it is closed by gp16 at the bottom of the complex. Gp16 acts as a valve whose closure prevents DNA leakage, while its opening is required for DNA release upon interaction of the virus with its host.
Cell | 1995
Stephen D. Fuller; John Berriman; Sarah J. Butcher; Brent Gowen
Time-resolved cryoelectron microscopy reveals the first step in the conformational changes that enable membrane fusion in Semliki Forest virus. The neutral pH structure reveals a central cavity within the spike complex, plate-like extensions forming a layer above the membrane, and the paths of the paired transmembrane domains connecting the trimeric spikes and pentamer-hexamer clustered capsid subunits. Low pH treatment results in centrifugal movement of E2, the receptor-binding subunit, centripetal movement of E1 to narrow the central cavity initiating the formation of an E1 trimer, and the extension of the E1 fusion sequence toward the target membrane.
Nature Structural & Molecular Biology | 2000
Elena V. Orlova; Rahman Ma; Brent Gowen; Kirill E. Volynski; Anthony C. Ashton; Catherine F. Manser; M. van Heel; Yuri A. Ushkaryov
We report here the first three-dimensional structure of α-latrotoxin, a black widow spider neurotoxin, which forms membrane pores and stimulates secretion in the presence of divalent cations. We discovered that α-latrotoxin exists in two oligomeric forms: it is dimeric in EDTA but forms tetramers in the presence of Ca2+ or Mg2+. The dimer and tetramer structures were determined independently at 18 Å and 14 Å resolution, respectively, using cryo-electron microscopy and angular reconstitution. The α-latrotoxin monomer consists of three domains. The N- and C-terminal domains have been identified using antibodies and atomic fitting. The C4-symmetric tetramers represent the active form of α-latrotoxin; they have an axial channel and can insert into lipid bilayers with their hydrophobic base, providing the first model of α-latrotoxin pore formation.