Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brent H. Koehn is active.

Publication


Featured researches published by Brent H. Koehn.


Blood | 2010

Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1–dependent mechanism that is up-regulated by interleukin-13

Steven L. Highfill; Paulo C. Rodriguez; Qing Zhou; Christine A. Goetz; Brent H. Koehn; Rachelle G. Veenstra; Patricia A. Taylor; Angela Panoskaltsis-Mortari; Jonathan S. Serody; David H. Munn; Jakub Tolar; Augusto C. Ochoa; Bruce R. Blazar

Myeloid-derived suppressor cells (MDSCs) are a well-defined population of cells that accumulate in the tissue of tumor-bearing animals and are known to inhibit immune responses. Within 4 days, bone marrow cells cultured in granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor resulted in the generation of CD11b(+)Ly6G(lo)Ly6C(+) MDSCs, the majority of which are interleukin-4Rα (IL-4Rα(+)) and F4/80(+). Such MDSCs potently inhibited in vitro allogeneic T-cell responses. Suppression was dependent on L-arginine depletion by arginase-1 activity. Exogenous IL-13 produced an MDSC subset (MDSC-IL-13) that was more potently suppressive and resulted in arginase-1 up-regulation. Suppression was reversed with an arginase inhibitor or on the addition of excess L-arginine to the culture. Although both MDSCs and MDSC-IL-13 inhibited graft-versus-host disease (GVHD) lethality, MDSC-IL-13 were more effective. MDSC-IL-13 migrated to sites of allopriming. GVHD inhibition was associated with limited donor T-cell proliferation, activation, and proinflammatory cytokine production. GVHD inhibition was reduced when arginase-1-deficient MDSC-IL-13 were used. MDSC-IL-13 did not reduce the graft-versus-leukemia effect of donor T cells. In vivo administration of a pegylated form of human arginase-1 (PEG-arg1) resulted in L-arginine depletion and significant GVHD reduction. MDSC-IL-13 and pegylated form of human arginase-1 represent novel strategies to prevent GVHD that can be clinically translated.


Journal of Experimental Medicine | 2007

Antigen-specific precursor frequency impacts T cell proliferation, differentiation, and requirement for costimulation

Mandy L. Ford; Brent H. Koehn; Maylene E. Wagener; Wanhong Jiang; Shivaprakash Gangappa; Thomas C. Pearson; Christian P. Larsen

After a brief period of antigenic stimulation, T cells become committed to a program of autonomous expansion and differentiation. We investigated the role of antigen-specific T cell precursor frequency as a possible cell-extrinsic factor impacting T cell programming in a model of allogeneic tissue transplantation. Using an adoptive transfer system to incrementally raise the precursor frequency of antigen-specific CD8+ T cells, we found that donor-reactive T cells primed at low frequency exhibited increased cellular division, decreased development of multifunctional effector activity, and an increased requirement for CD28- and CD154-mediated costimulation relative to those primed at high frequency. The results demonstrated that recipients with low CD4+ and CD8+ donor-reactive T cell frequencies exhibited long-term skin graft survival upon CD28/CD154 blockade, whereas simultaneously raising the frequency of CD4+ T cells to ∼0.5% and CD8+ T cells to ∼5% precipitated graft rejection despite CD28/CD154 blockade. Antigenic rechallenge of equal numbers of cells stimulated at high or low frequency revealed that cells retained an imprint of the frequency at which they were primed. These results demonstrate a critical role for initial precursor frequency in determining the CD8+ T cell requirement for CD28- and CD154-mediated costimulatory signals during graft rejection.


Blood | 2013

Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality

Asim Saha; Kazutoshi Aoyama; Patricia A. Taylor; Brent H. Koehn; Rachelle G. Veenstra; Angela Panoskaltsis-Mortari; David H. Munn; William J. Murphy; Miyuki Azuma; Hideo Yagita; Brian T. Fife; Mohammed H. Sayegh; Nader Najafian; Gérard Socié; Rafi Ahmed; Gordon J. Freeman; Arlene H. Sharpe; Bruce R. Blazar

Programmed death 1 (PD-1) and its ligands, PD-L1 and PD-L2, play an important role in the maintenance of peripheral tolerance. We explored the role of PD-1 ligands in regulating graft-versus-host disease (GVHD). Both PD-L1 and PD-L2 expression were upregulated in the spleen, liver, colon, and ileum of GVHD mice. Whereas PD-L2 expression was limited to hematopoietic cells, hematopoietic and endothelial cells expressed PD-L1. PD-1/PD-L1, but not PD-1/PD-L2, blockade markedly accelerated GVHD-induced lethality. Chimera studies suggest that PD-L1 expression on host parenchymal cells is more critical than hematopoietic cells in regulating acute GVHD. Rapid mortality onset in PD-L1-deficient hosts was associated with increased gut T-cell homing and loss of intestinal epithelial integrity, along with increased donor T-cell proliferation, activation, Th1 cytokine production, and reduced apoptosis. Bioenergetics profile analysis of proliferating alloreactive donor T-cells demonstrated increased aerobic glycolysis and oxidative phosphorylation in PD-L1-deficient hosts. Donor T-cells exhibited a hyperpolarized mitochondrial membrane potential, increased superoxide production, and increased expression of a glucose transporter in PD-L1-deficient hosts. Taken together, these data provide new insight into the differential roles of host PD-L1 and PD-L2 and their associated cellular and metabolic mechanisms controlling acute GVHD.


American Journal of Transplantation | 2006

NK Cells Mediate Costimulation Blockade-Resistant Rejection of Allogeneic Stem Cells During Nonmyeloablative Transplantation

Leslie S. Kean; Kelly Hamby; Brent H. Koehn; E. Lee; S. Coley; Linda Stempora; Andrew B. Adams; E. Heiss; Thomas C. Pearson; Christian P. Larsen

Although T‐cell CD28/CD40 costimulation blockade represents a powerful mechanism to promote immune tolerance during murine allotransplantation, it has not yet been successfully translated to clinical transplantation. We determined the impact of natural killer (NK) cells on costimulation blockade‐resistant rejection of donor bone marrow. We found that NK cells represent a potent barrier to engraftment: host NK depletion led to increased donor stem cell survival, increased mixed hematopoietic chimerism and to engraftment of low doses of donor marrow (1 × 108/kg) that were otherwise rejected. To understand the mechanisms of NK alloreactivity, we employed an in vivo NK‐specific cytotoxicity assay. We found that an increased proportion of target cells were killed between days 2 and 8 after cell transfer, and that NK killing of parental targets was inducible: NK cells preprimed with allotargets were more efficient at their elimination upon reexposure. Finally, both transplant and in vivo NK‐killing models were used to determine the contribution of LFA‐1 to NK alloreactivity. Blockade of LFA‐1 led to decreased NK‐mediated killing, and increased alloengraftment. These results identify NK alloreactivity as an integral component to costimulation blockade‐resistant rejection, and suggest that its inhibition may represent an important target in the clinical translation of tolerance‐induction transplantation.


Blood | 2015

The IL-33/ST2 axis augments effector T cell responses during acute GVHD

Dawn K. Reichenbach; Vincent Schwarze; Benjamin M. Matta; Victor Tkachev; Elisabeth Lieberknecht; Quan Liu; Brent H. Koehn; Dietmar Pfeifer; Patricia A. Taylor; Gabriele Prinz; Heide Dierbach; Natalie Stickel; Yvonne Beck; Max Warncke; Tobias Junt; Annette Schmitt-Graeff; Susumu Nakae; Marie Follo; Tobias Wertheimer; Lukas Schwab; Jason Devlin; Simon C. Watkins; Justus Duyster; James L.M. Ferrara; Heth R. Turnquist; Robert Zeiser; Bruce R. Blazar

Interleukin (IL)-33 binding to the receptor suppression of tumorigenicity 2 (ST2) produces pro-inflammatory and anti-inflammatory effects. Increased levels of soluble ST2 (sST2) are a biomarker for steroid-refractory graft-versus-host disease (GVHD) and mortality. However, whether sST2 has a role as an immune modulator or only as a biomarker during GVHD was unclear. We show increased IL-33 production by nonhematopoietic cells in the gastrointestinal (GI) tract in mice post-conditioning and patients during GVHD. Exogenous IL-33 administration during the peak inflammatory response worsened GVHD. Conversely, GVHD lethality and tumor necrosis factor-α production was significantly reduced in il33(-/-) recipients. ST2 was upregulated on murine and human alloreactive T cells and sST2 increased as experimental GVHD progressed. Concordantly, st2(-/-) vs wild-type (WT) donor T cells had a marked reduction in GVHD lethality and GI histopathology. Alloantigen-induced IL-18 receptor upregulation was lower in st2(-/-) T cells, and linked to reduced interferon-γ production by st2(-/-) vs WT T cells during GVHD. Blockade of IL-33/ST2 interactions during allogeneic-hematopoietic cell transplantation by exogenous ST2-Fc infusions had a marked reduction in GVHD lethality, indicating a role of ST2 as a decoy receptor modulating GVHD. Together, these studies point to the IL-33/ST2 axis as a novel and potent target for GVHD therapy.


Journal of Immunology | 2002

A spontaneous CD8 T cell-dependent autoimmune disease to an antigen expressed under the human keratin 14 promoter.

Maureen A. McGargill; Dita Mayerova; Heather E. Stefanski; Brent H. Koehn; Evan A. Parke; Stephen C. Jameson; Angela Panoskaltsis-Mortari; Kristin A. Hogquist

Using a previously described human keratin 14 (K14) promoter, we created mice expressing a peptide Ag (OVAp) in epithelial cells of the skin, tongue, esophagus, and thymus. Double transgenic mice that also express a TCR specific for this Ag (OT-I) showed evidence for Ag-driven receptor editing in the thymus. Surprisingly, such mice exhibited a severe autoimmune disease. In this work we describe the features of this disease and demonstrate that it is dependent on CD8 T cells. Consistent with the Ag expression pattern dictated by the human K14 promoter, an inflammatory infiltrate was observed in skin and esophagus and around bile ducts of the liver. We also observed a high level of TNF-α in the serum. Given that Ag expression in the thymus induced development of T cells with dual TCR reactivity, and that dual-reactive cells have been suggested to have autoimmune potential, we tested whether they were a causal factor in the disease observed here. We found that OT-I/K14-OVAp animals on a recombinase-activating gene-deficient background still suffered from disease. In addition, OT-I animals expressing OVA broadly in all tissues under a different promoter did not experience disease, despite having a similar number of dual-specific T cells. Thus, in this model it would appear that dual-reactive T cells do not underlie autoimmune pathology. Finally, we extended these observations to a second transgenic system involving 2C TCR-transgenic animals expressing the SIY peptide Ag with the hK14 promoter. We discuss the potential relationship between autoimmunity and self-Ags that are expressed in stratified epithelium.


Journal of Immunology | 2008

PD-1-Dependent Mechanisms Maintain Peripheral Tolerance of Donor-Reactive CD8+ T Cells to Transplanted Tissue

Brent H. Koehn; Mandy L. Ford; Ivana R. Ferrer; Keshawna Borom; Shivaprakash Gangappa; Allan D. Kirk; Christian P. Larsen

Peripheral mechanisms of self-tolerance often depend on the quiescent state of the immune system. To what degree such mechanisms can be engaged in the enhancement of allograft survival is unclear. To examine the role of the PD-1 pathway in the maintenance of graft survival following blockade of costimulatory pathways, we used a single-Ag mismatch model of graft rejection where we could track the donor-specific cells as they developed endogenously and emerged from the thymus. We found that graft-specific T cells arising under physiologic developmental conditions at low frequency were actively deleted at the time of transplantation under combined CD28/CD40L blockade. However, this deletion was incomplete, and donor-specific cells that failed to undergo deletion up-regulated expression of PD-1. Furthermore, blockade of PD-1 signaling on these cells via in vivo treatment with anti-PD-1 mAb resulted in rapid expansion of donor-specific T cells and graft loss. These results suggest that the PD-1 pathway was engaged in the continued regulation of the low-frequency graft-specific immune response and thus in maintenance of graft survival.


Blood | 2015

GvHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells

Brent H. Koehn; Petya Apostolova; Jessica M. Haverkamp; Jeffrey S. Miller; Valarie McCullar; Jakub Tolar; David H. Munn; William J. Murphy; Willie June Brickey; Jonathan S. Serody; Dmitry I. Gabrilovich; Vincenzo Bronte; Peter J. Murray; Jenny P.-Y. Ting; Robert Zeiser; Bruce R. Blazar

Myeloid-derived suppressor cells (MDSCs) are a naturally occurring immune regulatory population associated with inhibition of ongoing inflammatory responses. In vitro generation of MDSCs from bone marrow has been shown to enhance survival in an acute model of lethal graft-versus-host disease (GVHD). However, donor MDSC infusion only partially ameliorates GVHD lethality. In order to improve the potential therapeutic benefit and ultimately survival outcomes, we set out to investigate the fate of MDSCs after transfer in the setting of acute GVHD (aGVHD). MDSCs transferred to lethally irradiated recipients of allogeneic donor hematopoietic grafts are exposed to an intense inflammatory environment associated with aGVHD, which we now show directly undermines their suppressive capacity. Under a conditioning regimen and GVHD inflammatory settings, MDSCs rapidly lose suppressor function and their potential to inhibit GVHD lethality, which is associated with their induced conversion toward a mature inflammasome-activated state. We find even brief in vitro exposure to inflammasome-activating mediators negates the suppressive potential of cultured murine and human-derived MDSCs. Consistent with a role for the inflammasome, donor MDSCs deficient in the adaptor ASC (apoptosis-associated speck-like protein containing a CARD), which assembles inflammasome complexes, conferred improved survival of mice developing GVHD compared with wild-type donor MDSCs. These data suggest the use of MDSCs as a therapeutic approach for preventing GVHD and other systemic inflammatory conditions will be more effective when combined with approaches limiting in vivo MDSC inflammasome activation, empowering MDSCs to maintain their suppressive potential.


Journal of Immunology | 2011

Limiting the amount and duration of antigen exposure during priming increases memory T cell requirement for costimulation during recall.

Tamara L. Floyd; Brent H. Koehn; William H. Kitchens; Jennifer Robertson; Jennifer Cheeseman; Linda Stempora; Christian P. Larsen; Mandy L. Ford

Donor-reactive memory T cells (Tmem) can play an important role in mediating graft rejection after transplantation. Transplant recipients acquire donor-reactive Tmem not only through prior sensitization with alloantigens but also through previous exposure to environmental pathogens that are cross-reactive with allogeneic peptide–MHC complexes. Current dogma suggests that most, if not all, Tmem responses are independent of the requirement for CD28 and/or CD154/CD40-mediated costimulation to mount a recall response. However, heterogeneity among Tmem is increasingly being appreciated, and one important factor known to impact the function and phenotype of Ag-specific T cell responses is the amount/duration of Ag exposure. Importantly, the impact of Ag exposure on development of costimulation independence is currently unknown. In this study, we interrogated the effect of decreased Ag amount/duration during priming on the ability of donor-reactive Tmem to mediate costimulation blockade-resistant rejection during a recall response after transplantation in a murine model. Recipients possessing donor-reactive Tmem responses that were generated under conditions of reduced Ag exposure exhibited similar frequencies of Ag-specific T cells at day 30 postinfection, but, strikingly, failed to mediate costimulation blockade-resistant rejection after challenge with an OVA-expressing skin graft. Thus, these data demonstrate the amount/duration of Ag exposure is a critical factor in determining Tmem’s relative requirement for costimulation during the recall response after transplantation.


Blood | 2016

Peri-alloHCT IL-33 administration expands recipient T-regulatory cells that protect mice against acute GVHD

Benjamin M. Matta; Dawn K. Reichenbach; Xiaoli Zhang; Lisa Mathews; Brent H. Koehn; Gaelen K. Dwyer; Jeremy M. Lott; Franziska Maria Uhl; Dietmar Pfeifer; Colby J. Feser; Michelle J. Smith; Quan Liu; Robert Zeiser; Bruce R. Blazar; Hēth R. Turnquist

During allogeneic hematopoietic cell transplantation (alloHCT), nonhematopoietic cell interleukin-33 (IL-33) is augmented and released by recipient conditioning to promote type 1 alloimmunity and lethal acute graft-versus-host disease (GVHD). Yet, IL-33 is highly pleiotropic and exhibits potent immunoregulatory properties in the absence of coincident proinflammatory stimuli. We tested whether peri-alloHCT IL-33 delivery can protect against development of GVHD by augmenting IL-33-associated regulatory mechanisms. IL-33 administration augmented the frequency of regulatory T cells (Tregs) expressing the IL-33 receptor, suppression of tumorigenicity-2 (ST2), which persist following total body irradiation. ST2 expression is not exclusive to Tregs and IL-33 expands innate immune cells with regulatory or reparative properties. However, selective depletion of recipient Foxp3(+) cells concurrent with peri-alloHCT IL-33 administration accelerated acute GVHD lethality. IL-33-expanded Tregs protected recipients from GVHD by controlling macrophage activation and preventing accumulation of effector T cells in GVHD-target tissue. IL-33 stimulation of ST2 on Tregs activates p38 MAPK, which drives expansion of the ST2(+) Treg subset. Associated mechanistic studies revealed that proliferating Tregs exhibit IL-33-independent upregulation of ST2 and the adoptive transfer of st2(+) but not st2(-) Tregs mediated GVHD protection. In total, these data demonstrate the protective capacity of peri-alloHCT administration of IL-33 and IL-33-responsive Tregs in mouse models of acute GVHD. These findings provide strong support that the immunoregulatory relationship between IL-33 and Tregs can be harnessed therapeutically to prevent GVHD after alloHCT for treatment of malignancy or as a means for tolerance induction in solid organ transplantation.

Collaboration


Dive into the Brent H. Koehn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Munn

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Shivaprakash Gangappa

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Jonathan S. Serody

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Angela Panoskaltsis-Mortari

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia A. Taylor

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge