Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett I. Pletschke is active.

Publication


Featured researches published by Brett I. Pletschke.


Biotechnology Advances | 2012

A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy.

J.S. Van Dyk; Brett I. Pletschke

Lignocellulose is a complex substrate which requires a variety of enzymes, acting in synergy, for its complete hydrolysis. These synergistic interactions between different enzymes have been investigated in order to design optimal combinations and ratios of enzymes for different lignocellulosic substrates that have been subjected to different pretreatments. This review examines the enzymes required to degrade various components of lignocellulose and the impact of pretreatments on the lignocellulose components and the enzymes required for degradation. Many factors affect the enzymes and the optimisation of the hydrolysis process, such as enzyme ratios, substrate loadings, enzyme loadings, inhibitors, adsorption and surfactants. Consideration is also given to the calculation of degrees of synergy and yield. A model is further proposed for the optimisation of enzyme combinations based on a selection of individual or commercial enzyme mixtures. The main area for further study is the effect of and interaction between different hemicellulases on complex substrates.


Chemosphere | 2011

Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment.

J. Susan van Dyk; Brett I. Pletschke

Pesticides are released intentionally into the environment and, through various processes, contaminate the environment. Three of the main classes of pesticides that pose a serious problem are organochlorines, organophosphates and carbamates. While pesticides are associated with many health effects, there is a lack of monitoring data on these contaminants. Traditional chromatographic methods are effective for the analysis of pesticides in the environment, but have limitations and prevent adequate monitoring. Enzymatic methods have been promoted for many years as an alternative method of detection of these pesticides. The main enzymes that have been utilised in this regard have been acetylcholinesterase, butyrylcholinesterase, alkaline phosphatase, organophosphorus hydrolase and tyrosinase. The enzymatic methods are based on the activation or inhibition of the enzyme by a pesticide which is proportional to the concentration of the pesticide. Research on enzymatic methods of detection, as well as some of the problems and challenges associated with these methods, is extensively discussed in this review. These methods can serve as a tool for screening large samples which can be followed up with the more traditional chromatographic methods of analysis.


African Journal of Biotechnology | 2006

Enzyme treatment to decrease solids and improve digestion of primary sewage sludge

Hj Roman; Je Burgess; Brett I. Pletschke

The aim of anaerobic digestion of primary sewage sludge is to convert the carbonaceous material contained in the solids into methane and carbon dioxide. The products of digestion are therefore gases, stabilised sludge solids which are subsequently dewatered and disposed of, and sludge liquor which is generally further treated. This investigation assessed the impact of addition of hydrolytic enzymes to anaerobic digesters. Cellulase and pronase E were added singly and in combination, and it was found that the mixture of the two enzymes resulted in an 80% reduction in solids (cf. 20% in the control), 93% removal of particulate chemical oxygen demand (COD) (59% in the control) and 97% total COD removal (vs. 63%). The total suspended solids (TSS) concentration was reduced by 80%, from 25 g/l to 5 g/l. Single enzymes had little or no impact on sludge solubilisation, and final COD and TSS, but all of the enzyme additions were seen to decrease the production of volatile fatty acids (VFAs). Since accumulation of VFAs can lead to digester failure, it was concluded that the enzyme additives enhanced digester performance in terms of degradation of COD, reduction in sludge solids remaining after digestion and improved digester stability owing to the stable prevailing pH. The results indicate that enzyme addition at full scale could be expected to lead to greater methane yields, lower strength sludge liquors and a significant reduction in the requirements for and costs of digested sludge dewatering and disposal.


Enzyme and Microbial Technology | 2014

Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

Abhishek Bhattacharya; Brett I. Pletschke

The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks.


World Journal of Microbiology & Biotechnology | 2015

A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase

Samkelo Malgas; J. Susan van Dyk; Brett I. Pletschke

Mannan is an important polysaccharide found in softwoods and many other plant sources. Mannans from various sources display large differences in composition, structure and complexity. To hydrolyse mannan into its monomer sugars requires a number of enzymes working in synergy. This review examines mannan structure and the enzymes required for its hydrolysis. Several studies have investigated the effect of supplementing β-mannanases with β-mannosidases and α-galactosidases in binary and ternary combinations. Synergistic enhancement of hydrolysis has been found in some, but not all cases. In the case of mannosidases, they sometimes display an anti-synergistic effect with mannanases, most likely due to competition for binding sites. Most importantly, in the case of α-galactosidases, the same enzyme from different families display differences in synergistic interactions due to different specificities. An improved understanding of enzyme interactions will aid in achieving enhanced hydrolysis of mannans and higher sugar yields. This review highlights areas which require further research in order to gain a better understanding of mannan hydrolysis and utilisation. Such knowledge is very important as this can be used in the optimisation of commercial or purified enzyme mixtures to improve the economic viability of the conversion of high mannan-containing biomass such as softwoods into fermentable sugars for bioethanol production.


Bioresource Technology | 2011

Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse

Natasha Beukes; Brett I. Pletschke

This aim of this study was to investigate the effect of ammonium hydroxide (NH(4)OH) and sodium hydroxide (NaOH) pre-treatment on the digestibility of sugarcane bagasse (SCB) by hemicellulase action. It was found that pre-treatment of SCB with NH(4)OH removed a larger percentage of the SCB lignin and effectively increased SCB digestibility 13.13 fold. The greatest amount of reducing sugar (1194.88 μmol/min) and largest degree of synergy (2.85) was obtained using a combination of two enzymes (25% ManA and 75% XynA) with NH(4)OH pre-treated SCB. In this study, NH(4)OH therefore appeared to be a more effective pre-treatment step for subsequent hydrolysis by hemicellulases.


Bioresource Technology | 2010

Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases.

Natasha Beukes; Brett I. Pletschke

Agricultural crop wastes are typically lignocellulosic in composition and thus partially recalcitrant to enzymatic degradation. The recalcitrant nature of plant biomass and the inability to obtain complete enzymatic hydrolysis has led to the establishment of various pre-treatment strategies. Alkaline pre-treatments increase the accessibility of the exposed surface to enzymatic hydrolysis through the removal of acetyl and uronic acid substituents on hemicelluloses. Unlike the use of steam and acid pre-treatments, alkaline pre-treatments (e.g. lime) solubilise lignin and a small percentage of the hemicelluloses. The most common alkaline pre-treatments that are employed make use of sodium hydroxide and lime. This study compared the synergistic degradation of un-treated and lime pre-treated sugarcane bagasse using cellulosomal and non-cellulosomal hemicellulases as free enzymes. The enzyme combination of 37.5% ArfA and 62.5% ManA produced the highest amount of reducing sugar of 91.834 micromol/min for the degradation of un-treated bagasse. This enzyme combination produced a degree of synergy of 1.87. The free enzymes displayed an approximately 6-fold increase in the enzyme activity, i.e. the total amount of reducing sugar released (593.65 micromol/min) with the enzyme combination of 37.5% ArfA, 25% ManA and 37.5% XynA for the lime pre-treated substrate and a degree of synergy of 2.14. To conclude, this study indicated that pre-treating the sugarcane bagasse is essential, in order to increase the efficiency of lignocellulose enzymatic hydrolysis by disruption of the lignin sheath, that the lime pre-treatment did not have any dramatic effect on the synergistic relationship between the free enzymes, and that time may play an important role in the establishment of synergistic relationships between enzymes.


Biotechnology Letters | 2015

Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production.

Ankita Shrivastava Bhattacharya; Abhishek Bhattacharya; Brett I. Pletschke

The complex structure of lignocellulose requires the involvement of a suite of lignocellulolytic enzymes for bringing about an effective de-polymerization. Cellulases and hemicellulases from both fungi and bacteria have been studied extensively. This review illustrates the mechanism of action of different cellulolytic and hemi-cellulolytic enzymes and their distinctive roles during hydrolysis. It also examines how different approaches can be used to improve the synergistic interaction between fungal and bacterial glycosyl hydrolases with a focus on fungal cellulases and bacterial hemicellulases. The approach entails the role of cellulosomes and their improvement through incorporation of novel enzymes and evaluates the recent break-through in the construction of designer cellulosomes and their extension towards improving fungal and bacterial synergy. The proposed approach also advocates the incorporation and cell surface display of designer cellulosomes on non-cellulolytic solventogenic strains along with the innovative application of combined cross-linked enzyme aggregates (combi-CLEAs) as an economically feasible and versatile tool for improving the synergistic interaction through one-pot cascade reactions.


Environmental Monitoring and Assessment | 2013

The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures

K. Mwila; Mike. H. Burton; J.S. Van Dyk; Brett I. Pletschke

Organophosphate (OP) and carbamate (CP) pesticides act by the inhibition of acetylcholinesterase (AChE). This enables the use of this enzyme for the detection of these pesticides in the environment. While many studies have looked at the effect of single pesticides on AChE, the effect of mixtures of pesticides still requires extensive investigation. This is important to evaluate the cumulative risk in the case of simultaneous exposure to multiple pesticides. Therefore we examined the effect of five different pesticides (carbaryl, carbofuran, parathion, demeton-S-methyl, and aldicarb) on AChE activity to determine whether combinations had an additive, synergistic, or antagonistic inhibitory effect. Results indicated that the mixtures had an additive inhibitory effect on AChE activity. The data from the assays of the mixtures were used to develop and train an artificial neural network (ANN) which was then utilised successfully for the identification of pesticides and their concentrations in mixtures. This study is significant because it evaluated mixtures of OPs and CPs where previous studies focused on either OPs or CPs. Previous studies have only examined up to three pesticides while this study evaluated mixtures of five pesticides simultaneously. This is also the first study where an ANN was able to utilise data from the inhibition of a single enzyme to differentiate five different pesticides and their concentrations from mixtures.


Enzyme and Microbial Technology | 2015

β-Mannanase (Man26A) and α-galactosidase (Aga27A) synergism – A key factor for the hydrolysis of galactomannan substrates

Samkelo Malgas; Susan J. van Dyk; Brett I. Pletschke

This study investigated the behavior of mannan-degrading enzymes, specifically focusing on differences with respect to their substrate specificities and their synergistic associations with enzymes from different glycoside hydrolase (GH) families. Galactosidases from Cyamopsis tetragonolobus seeds (Aga27A, GH27) and Aspergillus niger (AglC, GH36) were evaluated for their abilities to synergistically interact with mannanases from Clostridium cellulovorans (ManA, GH5) and A. niger (Man26A, GH26) in hydrolysis of guar gum and locust bean gum. Among the mannanases, Man26A was more efficient at hydrolyzing both galactomannan substrates, while among the galactosidases; Aga27A was the most effective at removing galactose substituents on both galactomannan substrates and galactose-containing oligosaccharides. An optimal protein mass ratio of glycoside hydrolases required to maximize the release of both reducing sugar and galactose residues was determined. Clear synergistic enhancement of locust bean gum hydrolysis with respect to reducing sugar release was observed when both mannanases at 75% enzyme dosage were supplemented with 25% enzyme protein dosage of Aga27A. At a protein ratio of 75% Man26A to 25% Aga27A, the presence of Man26A significantly enhanced galactose release by 25% Aga27A (2.36 fold) with locust bean gum, compared to when Aga27A was used alone at 100% enzyme protein dosage. A dosage of Aga27A at 75% and ManA at 25% protein content liberated the highest reducing sugar release on guar gum hydrolysis. A dosage of Man26A and Aga27A at 75-25% protein content, respectively, liberated reducing sugar release equivalent to that when Man26A was used alone at 100% protein content. From the findings obtained in this study, it was observed that the GH family classification of an enzyme affects its substrate specificity and synergistic interactions with other glycoside hydrolases from different families (more so than its EC classification). The GH26 Man26A and GH27 Aga27A enzymes appeared to be more promising for applications that involve the hydrolysis of galactomannan containing biomass. This method of screening for maximal compatibility between various GH families can ultimately lead to a more rational development of tailored enzyme cocktails for lignocellulose hydrolysis.

Collaboration


Dive into the Brett I. Pletschke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N Khan

Cape Peninsula University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marilize Le Roes-Hill

Cape Peninsula University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge