Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett J. Vanderford is active.

Publication


Featured researches published by Brett J. Vanderford.


Environmental Science & Technology | 2011

Artificial Sweetener Sucralose in U.S. Drinking Water Systems

Douglas B. Mawhinney; Robert B. Young; Brett J. Vanderford; Thomas Borch; Shane A. Snyder

The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.


Environmental Toxicology and Chemistry | 2012

Contaminants of emerging concern in municipal wastewater effluents and marine receiving water

Doris E. Vidal-Dorsch; Steven M. Bay; Keith A. Maruya; Shane A. Snyder; Rebecca A. Trenholm; Brett J. Vanderford

The occurrence and concentrations of contaminants of emerging concern (CECs) were investigated in municipal effluents and in marine receiving water. Final effluent from four large publicly owned treatment works (POTWs) and seawater collected near the respective POTW outfall discharges and a reference station were collected quarterly over one year and analyzed for 56 CECs. Several CECs were detected in effluents; naproxen, gemfibrozil, atenolol, and tris(1-chloro-2-propyl)phosphate were the compounds most frequently found and with the highest concentrations (>1 µg/L). Gemfibrozil and naproxen had the highest seawater concentrations (0.0009 and 0.0007 µg/L) and also were among the most frequently detected compounds. Effluent dilution factors ranged from >400 to approximately 1,000. Fewer CECs were detected and at lower concentrations in seawater collected from the reference station than at the outfall sites. Effluent concentrations for some CECs (e.g., pharmaceuticals) were inversely related to the degree of wastewater treatment. This trend was not found in seawater samples. Few temporal differences were observed in effluent or seawater samples. Effluent CEC concentrations were lower than those currently known for chronic toxicity thresholds. Nevertheless, the evaluation of potential chronic effects for CECs is uncertain because aquatic life toxicity thresholds have been developed for only a few CECs, and the effluent and seawater samples had compounds, such as nonylphenol, known to bioaccumulate in local fish. Additional data are needed to better understand the significance of CEC presence and concentrations in marine environments.


Journal of Chromatography A | 2008

Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry

Rebecca A. Trenholm; Brett J. Vanderford; Jörg E. Drewes; Shane A. Snyder

A method has been developed for the determination of 24 household high production volume (HPV) chemicals in municipal wastewater systems using solid-phase extraction (SPE) and analyses using both gas chromatography and liquid chromatography, each with tandem mass spectrometry (GC-MS/MS and LC-MS/MS). Target compounds include pesticides, antioxidants, fragrances, plasticizers, preservatives and personal care products. Method reporting limits ranged from 0.1 to 100 ng/L in water and recoveries for most compounds were between 54 and 112%. Household HPVs were consistently detected in raw sewage entering three full-scale wastewater treatment plants. Compounds such as vanillin, DEET, benzophenone, 3-indolebutyric acid, bisphenol A, triclosan and triclocarban were detected in all wastewater influent and effluent samples, but were significantly lower in the effluent. Many of the remaining compounds were detected in the influent, but below detection in effluent samples. Menthol and phenoxyethanol had the highest observed concentrations in influent samples ranging from 1.5 to 13 microg/L for menthol, and 8.8 to 22 microg/L for phenoxyethanol. MGK-11, methylresorcinol, trifluralin, hexabromododecane, acriflavin and atrazine were not detected in any samples. The method described here detects a broad range of HPV chemicals with great sensitivity and selectivity.


Water Research | 2009

A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons

Adam M. Redding; Fred S. Cannon; Shane A. Snyder; Brett J. Vanderford

Rapid small-scale column tests (RSSCTs) examined the removal of 29 endocrine disrupting compounds (EDCs) and pharmaceutical/personal care products (PPCPs). The RSSCTs employed three lignite variants: HYDRODARCO 4000 (HD4000), steam-modified HD4000, and methane/steam-modified HD4000. RSSCTs used native Lake Mead, NV water spiked with 100-200 ppt each of 29 EDCs/PPCPs. For the steam and methane/steam variants, breakthrough occurred at 14,000-92,000 bed volumes (BV); and this was 3-4 times more bed volumes than for HD4000. Most EDC/PPCP bed life data were describable by a normalized quantitative structure-activity relationship (i.e. QSAR-like model) of the form: where TPV is the pore volume, rho(mc) is the apparent density, CV is the molecular volume, C(o) is the concentration, (8)chi(p) depicts the molecules compactness, and FOSA is the molecules hydrophobic surface area.


Environmental Science & Technology | 2012

Transformation of 1H-benzotriazole by ozone in aqueous solution.

Douglas B. Mawhinney; Brett J. Vanderford; Shane A. Snyder

Recent studies have shown that 1H-benzotriazole is a widespread contaminant of wastewater and surface water. Although disinfection by ozone has been shown to efficiently remove this compound, the transformation products have not been identified. To that end, the reaction of ozone with 1H-benzotriazole in aqueous solution has been studied in real time employing quadrupole time-of-flight mass spectrometry (Q-TOF MS) and negative electrospray ionization. The transformation products have been identified by calculating their empirical formulas using accurate mass measurements, and further confirmed by performing the reaction with stable isotope-labeled 1H-benzotriazole and measuring product ion spectra. Stable reaction products were distinguished from transient species by plotting their extracted mass profiles. The products that resulted from ozone and hydroxyl radicals in the reaction were qualitatively identified by modifying the conditions to either promote the formation of hydroxyl radicals, or to scavenge them. Based on experimental evidence, a mechanism for the direct reaction between ozone and 1H-benzotriazole is proposed that results in the formation of 1H-1,2,3-triazole-4,5-dicarbaldehyde, which has an empirical formula of C(4)H(3)O(2)N(3). Lastly, it was confirmed that the same transformation products formed in surface water and tertiary-treated wastewater, although they were observed to degrade at higher ozone doses.


Environmental Pollution | 2013

Titanium distribution in swimming pool water is dominated by dissolved species

R. David Holbrook; Donna Motabar; Oscar Quiñones; Benjamin D. Stanford; Brett J. Vanderford; Donna Moss

The increased use of titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a childrens swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal.


Analytical Chemistry | 2014

Results of an interlaboratory comparison of analytical methods for contaminants of emerging concern in water.

Brett J. Vanderford; Jörg E. Drewes; Andrew Eaton; Yingbo C. Guo; Ali Haghani; Christiane Hoppe-Jones; Michael Schluesener; Shane A. Snyder; Thomas A. Ternes; Curtis Wood

An evaluation of existing analytical methods used to measure contaminants of emerging concern (CECs) was performed through an interlaboratory comparison involving 25 research and commercial laboratories. In total, 52 methods were used in the single-blind study to determine method accuracy and comparability for 22 target compounds, including pharmaceuticals, personal care products, and steroid hormones, all at ng/L levels in surface and drinking water. Method biases ranged from <10% to well over 100% in both matrixes, suggesting that while some methods are accurate, others can be considerably inaccurate. In addition, the number and degree of outliers identified suggest a high degree of variability may be present between methods currently in use. Three compounds, ciprofloxacin, 4-nonylphenol (NP), and 4-tert-octylphenol (OP), were especially difficult to measure accurately. While most compounds had overall false positive rates of ≤5%, bisphenol A, caffeine, NP, OP, and triclosan had false positive rates >15%. In addition, some methods reported false positives for 17β-estradiol and 17α-ethynylestradiol in unspiked drinking water and deionized water, respectively, at levels higher than published predicted no-effect concentrations for these compounds in the environment. False negative rates were also generally <5%; however, rates were higher for the steroid hormones and some of the more challenging compounds, such as ciprofloxacin. The elevated false positive/negative rates of some analytes emphasize the susceptibility of many current methods to blank contamination, misinterpretation of background interferences, and/or inappropriate setting of detection/quantification levels for analysis at low ng/L levels. The results of both comparisons were collectively assessed to identify parameters that resulted in the best overall method performance. Liquid chromatography-tandem mass spectrometry coupled with the calibration technique of isotope dilution were able to accurately quantify most compounds with an average bias of <10% for both matrixes. These findings suggest that this method of analysis is suitable at environmentally relevant levels for most of the compounds studied. This work underscores the need for robust, standardized analytical methods for CECs to improve data quality, increase comparability between studies, and help reduce false positive and false negative rates.


Aquatic Toxicology | 2013

Genomic and phenotypic response of hornyhead turbot exposed to municipal wastewater effluents

Doris E. Vidal-Dorsch; Steven M. Bay; Cataldo Ribecco; L. James Sprague; Mila Angert; Colleen Ludka; Eugenia Ricciardelli; Oliana Carnevali; Darrin J. Greenstein; Daniel Schlenk; Kevin M. Kelley; Jesus A. Reyes; Shane A. Snyder; Brett J. Vanderford; Lan Wiborg; Dawn Petschauer; Roman Sasik; Michael E. Baker; Gary Hardiman

Laboratory tests with marine flatfish were conducted to investigate associations among gene expression, higher biological responses and wastewater effluent exposure. In the present study, male hornyhead turbot (Pleuronichthys verticalis) were exposed to environmentally realistic (0.5%) and higher (5%) concentrations of chemically enhanced advanced-primary (PL) and full-secondary treated (HTP) effluents from two southern California wastewater treatment plants (WWTP). Hepatic gene expression was examined using a custom low-density microarray. Alterations in gene expression (vs. controls) were observed in fish exposed to both effluent types. Fish exposed to 0.5% PL effluent showed changes in genes involved in the metabolism of xenobiotics, steroids, and lipids, among other processes. Fish exposed to 5% PL effluent showed expression changes in genes involved in carbohydrate metabolism, stress responses, xenobiotic metabolism, and steroid synthesis, among others. Exposure to 5% HTP effluent changed the expression of genes involved in lipid, glutathione and xenobiotic metabolism, as well as immune responses. Although no concentration-dependent patterns of response to effluent exposure were found, significant Spearman correlations were observed between the expression of 22 genes and molecular and/or higher biological responses. These results indicate that microarray gene expression data correspond to higher biological responses and should be incorporated in studies assessing fish health after exposure to complex environmental mixtures.


Journal of Chromatography A | 2009

Characterization of fulvic acids by liquid chromatography-quadrupole time-of-flight mass spectrometry

Douglas B. Mawhinney; Fernando L. Rosario-Ortiz; Seungyun Baik; Brett J. Vanderford; Shane A. Snyder

Fulvic acid standards from Suwannee River, Pony Lake, Elliot Soil, Waskish Peat, and Nordic Reservoir were characterized by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) operating in negative electrospray ionization mode. The method employed a commercially available stationary phase that resulted in a distinctive chromatographic peak for each of the fulvic acid samples that differed in width and retention time at peak maximum. The QTOF-MS, operating in TOF mode, revealed that the unique chromatographic peak shapes were the result of the relative fraction of hydrogen and oxygen contained in various fulvic acid components. Those species that contained larger amount of hydrogen displayed a larger mass defect and were retained longer on the LC column, indicating reduced polarity. This is supported by a reduction in the degree of fragmentation related to polar functional groups as the mass defect and retention time increased. Lastly, the analysis of even and odd mass (at m/z 1 greater) ion intensity ratios revealed a correlation to the percent nitrogen of the various standards.


Analytical Chemistry | 2008

Real-Time Detection and Identification of Aqueous Chlorine Transformation Products Using QTOF MS

Brett J. Vanderford; Douglas B. Mawhinney; Fernando L. Rosario-Ortiz; Shane A. Snyder

A screening technique has been developed that allows the rapid, real-time detection and identification of major transformation products of organic contaminants during aqueous oxidation experiments. In this technique, a target contaminant is dissolved in buffered water and chlorinated by the addition of sodium hypochlorite to give a free chlorine residual of 3 mg/L. Solution from the reaction vessel is combined with methanol and pumped directly into the electrospray ionization source of a quadrupole time-of-flight mass spectrometer (QTOF MS). The real-time decay of the target contaminant and the formation/decay of transformation products are then monitored using the QTOF MS. Subsequently, accurate mass measurements with internal mass calibration (<5 ppm mass error) and product ion scans are employed to identify these transformation products. Unlike other techniques, it requires no liquid chromatography, derivatization, or quenching of residual chlorine, all of which can interfere with transformation product analysis. To validate the technique, aqueous chlorination experiments were performed on triclosan, a previously studied environmental contaminant. Earlier research showing that triclosan underwent chlorine addition to form mono- and dichlorinated transformation products was successfully reproduced, demonstrating the feasibility of the technique. In addition, the technique revealed the formation of a stable oxygen radical-containing transformation product resulting from the oxidation of either mono- or dichlorinated triclosan. This triclosan transformation product was determined to have an empirical formula of C12H4O3Cl4 with 3.9 ppm mass error. Furthermore, atorvastatin, a commonly prescribed medication and environmental contaminant, was subjected to aqueous chlorination and studied with the technique. Atorvastatin underwent hydroxylation to form two transformation products with the empirical formulas C33H34FN2O6 (1.8 ppm mass error) and C26H29O5NF (2.9 ppm mass error).

Collaboration


Dive into the Brett J. Vanderford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca A. Trenholm

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar

Oscar Quiñones

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis W. Lindle

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas B. Mawhinney

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janie C. Holady

Southern Nevada Water Authority

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge