Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett L. Foster is active.

Publication


Featured researches published by Brett L. Foster.


The Journal of Neuroscience | 2012

Electrical Stimulation of Human Fusiform Face-Selective Regions Distorts Face Perception

Josef Parvizi; Corentin Jacques; Brett L. Foster; Nathan Withoft; Vinitha Rangarajan; Kevin S. Weiner; Kalanit Grill-Spector

Face-selective neural responses in the human fusiform gyrus have been widely examined. However, their causal role in human face perception is largely unknown. Here, we used a multimodal approach of electrocorticography (ECoG), high-resolution functional magnetic resonance imaging (fMRI), and electrical brain stimulation (EBS) to directly investigate the causal role of face-selective neural responses of the fusiform gyrus (FG) in face perception in a patient implanted with subdural electrodes in the right inferior temporal lobe. High-resolution fMRI identified two distinct FG face-selective regions [mFus-faces and pFus-faces (mid and posterior fusiform, respectively)]. ECoG revealed a striking anatomical and functional correspondence with fMRI data where a pair of face-selective electrodes, positioned 1 cm apart, overlapped mFus-faces and pFus-faces, respectively. Moreover, electrical charge delivered to this pair of electrodes induced a profound face-specific perceptual distortion during viewing of real faces. Specifically, the subject reported a “metamorphosed” appearance of faces of people in the room. Several controls illustrate the specificity of the effect to the perception of faces. EBS of mFus-faces and pFus-faces neither produced a significant deficit in naming pictures of famous faces on the computer, nor did it affect the appearance of nonface objects. Further, the appearance of faces remained unaffected during both sham stimulation and stimulation of a pair of nearby electrodes that were not face-selective. Overall, our findings reveal a striking convergence of fMRI, ECoG, and EBS, which together offer a rare causal link between functional subsets of the human FG network and face perception.


The Journal of Neuroscience | 2013

A Brain Area for Visual Numerals

Jennifer Shum; Dora Hermes; Brett L. Foster; Mohammad Dastjerdi; Vinitha Rangarajan; Jonathan Winawer; Kai J. Miller; Josef Parvizi

Is there a distinct area within the human visual system that has a preferential response to numerals, as there is for faces, words, or scenes? We addressed this question using intracranial electrophysiological recordings and observed a significantly higher response in the high-frequency broadband range (high γ, 65–150 Hz) to visually presented numerals, compared with morphologically similar (i.e., letters and false fonts) or semantically and phonologically similar stimuli (i.e., number words and non-number words). Anatomically, this preferential response was consistently localized in the inferior temporal gyrus and anterior to the temporo-occipital incisure. This region lies within or close to the fMRI signal-dropout zone produced by the nearby auditory canal and venous sinus artifacts, an observation that may account for negative findings in previous fMRI studies of preferential response to numerals. Because visual numerals are culturally dependent symbols that are only learned through education, our novel finding of anatomically localized preferential response to such symbols provides a new example of acquired category-specific responses in the human visual system.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Differential electrophysiological response during rest, self-referential, and non–self-referential tasks in human posteromedial cortex

Mohammad Dastjerdi; Brett L. Foster; Sharmin Nasrullah; Andreas M. Rauschecker; Robert F. Dougherty; Jennifer D. Townsend; Catie Chang; Michael D. Greicius; Vinod Menon; Daniel P. Kennedy; Josef Parvizi

The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network (DMN) remains largely unknown. Here we use intracranial recordings in the human posteromedial cortex (PMC), a core node within the DMN, during conditions of cued rest, autobiographical judgments, and arithmetic processing. We found a heterogeneous profile of PMC responses in functional, spatial, and temporal domains. Although the majority of PMC sites showed increased broad gamma band activity (30–180 Hz) during rest, some PMC sites, proximal to the retrosplenial cortex, responded selectively to autobiographical stimuli. However, no site responded to both conditions, even though they were located within the boundaries of the DMN identified with resting-state functional imaging and similarly deactivated during arithmetic processing. These findings, which provide electrophysiological evidence for heterogeneity within the core of the DMN, will have important implications for neuroimaging studies of the DMN.


NeuroImage | 2012

Resting oscillations and cross-frequency coupling in the human posteromedial cortex.

Brett L. Foster; Josef Parvizi

Using rare intracranial recordings from the posterior interhemispheric region of the human brain, we explored the oscillatory properties of the posteromedial cortex (PMC) during rest. The PMC is a core structure of the default mode network, which is known for its higher activity during the resting state. We found that resting PMC spectral power peaked in the theta band range (4-7 Hz) and was clearly distinguishable from adjacent cortical sites in the occipital lobe displaying peaks in the alpha band range (8-12 Hz). Additionally, the phase of PMC theta oscillations modulated the amplitude of ongoing high gamma (70-180 Hz) activity during the resting state. The magnitude of this cross-frequency modulation was shown to fluctuate at time scales comparable to those observed in functional neuroimaging studies of intrinsic functional connectivity networks (~0.1 Hz). The difference of canonical oscillations in the PMC compared to its adjacent cortical sites conforms to functional specialization across anatomical boundaries. Such differences may reflect separate oscillatory preferences between networks that are functionally connected.


The Journal of Neuroscience | 2014

Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception.

Vinitha Rangarajan; Dora Hermes; Brett L. Foster; Kevin S. Weiner; Corentin Jacques; Kalanit Grill-Spector; Josef Parvizi

Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception.


Journal of Neural Engineering | 2013

Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas

Cynthia A. Chestek; Vikash Gilja; Christine H Blabe; Brett L. Foster; Krishna V. Shenoy; Josef Parvizi; Jaimie M. Henderson

OBJECTIVE Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system. APPROACH We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. MAIN RESULTS Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. SIGNIFICANCE These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.


The Journal of Neuroscience | 2013

Human Retrosplenial Cortex Displays Transient Theta Phase Locking with Medial Temporal Cortex Prior to Activation during Autobiographical Memory Retrieval

Brett L. Foster; Anthony Kaveh; Mohammad Dastjerdi; Kai J. Miller; Josef Parvizi

The involvement of retrosplenial cortex (RSC) in human autobiographical memory retrieval has been confirmed by functional brain imaging studies, and is supported by anatomical evidence of strong connectivity between the RSC and memory structures within the medial temporal lobe (MTL). However, electrophysiological investigations of the RSC and its interaction with the MTL have mostly remained limited to the rodent brain. Recently, we reported a selective increase of high-frequency broadband (HFB; 70–180 Hz) power within the human RSC during autobiographical retrieval, and a predominance of 3–5 Hz theta band oscillations within the RSC during the resting state. In the current study, we aimed to explore the temporal dynamics of theta band interaction between human RSC and MTL during autobiographical retrieval. Toward this aim, we obtained simultaneous recordings from the RSC and MTL in human subjects undergoing invasive electrophysiological monitoring, and quantified the strength of RSC–MTL theta band phase locking. We observed significant phase locking in the 3–4 Hz theta range between the RSC and the MTL during autobiographical retrieval. This theta band phase coupling was transient and peaked at a consistent latency before the peak of RSC HFB power across subjects. Control analyses confirmed that theta phase coupling between the RSC and MTL was not seen for other conditions studied, other sites of recording, or other frequency ranges of interest (1–20 Hz). Our findings provide the first evidence of theta band interaction between the human RSC and MTL during conditions of autobiographical retrieval.


Cognitive Neurodynamics | 2008

Population based models of cortical drug response: insights from anaesthesia.

Brett L. Foster; Ingo Bojak; David T. J. Liley

A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia.


Brain | 2011

Gelastic epilepsy and hypothalamic hamartomas: neuroanatomical analysis of brain lesions in 100 patients

Josef Parvizi; Scheherazade Le; Brett L. Foster; Blaise F. D. Bourgeois; James J. Riviello; Erin Prenger; Clifford B. Saper; John F. Kerrigan

Hypothalamic hamartomas present with isolated fits of ictal laughter (gelastic epilepsy) or a combination of gelastic and other types of seizures. Many of these patients also suffer from cognitive decline, neuropsychiatric comorbidities and precocious puberty. Although there is a large body of anecdotal evidence about hypothalamic hamartomas and gelastic seizures, many questions still remain to be answered. For instance, which specific hypothalamic regions are most affected by the location of hamartomas causing laughing versus other types of seizures? Does the neuroanatomical localization of the lesions differ in cases with only gelastic seizures or a combination of gelastic and other types of seizures? Does the location of the lesions correlate with the presence of precocious puberty, and does the type of lesion influence the severity or the type of seizures? In a retrospective review of clinical and structural neuroimaging data from 100 cases of gelastic epilepsy and hypothalamic hamartoma, we aimed to address these questions by analysing the clinical presentation and the neuroanatomical features of the hypothalamic lesions in these patients. Our findings suggest that in all 100 cases, lesions were centred at the level of the mammillary bodies in the posterior hypothalamus. Compared with the patients with pure gelastic seizures (n = 32), those with gelastic and other types of seizures (n = 68) had significantly longer duration of epilepsy (P < 0.001), whereas age of seizure onset, the volume of lesions and the proximity to the mammillary bodies were not different between the two groups. In contrast, patients with cognitive or developmental impairment and those with precocious puberty had significantly larger lesions involving the anterior and posterior hypothalamus.


Neuron | 2015

Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex.

Brett L. Foster; Vinitha Rangarajan; William R. Shirer; Josef Parvizi

Human neuroimaging studies have suggested that subregions of the medial and lateral parietal cortex form key nodes of a larger brain network supporting episodic memory retrieval. To explore the electrophysiological correlates of functional connectivity between these subregions, we recorded simultaneously from medial and lateral parietal cortex using intracranial electrodes in three human subjects. We observed electrophysiological co-activation of retrosplenial/posterior cingulate cortex (RSC/PCC) and angular gyrus (AG) in the high-frequency broadband (HFB, or high-gamma) range, for conditions that required episodic retrieval. During resting and sleeping states, slow fluctuations (<1 Hz) of HFB activity were highly correlated between these task-co-activated neuronal populations. Furthermore, intrinsic electrophysiological connectivity patterns matched those obtained with resting-state fMRI from the same subjects. Our findings quantify the spatiotemporal dynamics of parietal cortex during episodic memory retrieval and provide clear neurophysiological correlates of intrinsic and task-dependent functional connectivity in the human brain.

Collaboration


Dive into the Brett L. Foster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. J. Liley

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corentin Jacques

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge