Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dora Hermes is active.

Publication


Featured researches published by Dora Hermes.


PLOS ONE | 2008

Gamma power is phase-locked to posterior alpha activity.

Daria Osipova; Dora Hermes; Ole Jensen

Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30–70 Hz) is phase-locked to alpha oscillations (8–13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability.


Journal of Neuroscience Methods | 2010

Automated electrocorticographic electrode localization on individually rendered brain surfaces

Dora Hermes; Kai J. Miller; Herke Jan Noordmans; Mariska J. Vansteensel; Nick F. Ramsey

Brain surface electrocorticographic (ECoG) recordings can investigate human brain electrophysiology at the cortical surface with exceptionally high signal to noise ratio and spatio-temporal resolution. To be able to use the high spatial resolution of ECoG for accurate brain function mapping and neurophysiology studies, the exact location of the ECoG electrodes on the brain surface should be known. Several issues complicate robust localization: surgical photographs of the electrode array made after implantation are often incomplete because the grids may be moved underneath the skull, beyond the exposed area. Computed tomography (CT) scans made after implantation will clearly localize electrodes, but the effects of surgical intervention may cause the exposed brain to move away from the skull and assume an unpredictable shape (the so-called brain shift). First, we present a method based on a preoperative magnetic resonance imaging (MRI) coregistered with a post-implantation CT scan to localize the electrodes and that automatically corrects for the brain shift by projecting the electrodes to the surface of the cortex. The calculated electrode positions are visualized on the individual subjects brain surface rendering. Second, the method was validated by comparison with surgical photographs, finding a median difference between photographic and calculated electrode centers-of-mass of only 2.6mm, across 6 subjects. Third, to illustrate its utility we demonstrate how functional MRI and ECoG findings in the same subject may be directly compared in a simple motor movement experiment even when electrodes are not visible in the craniotomy.


Human Brain Mapping | 2012

Neurophysiologic correlates of fMRI in human motor cortex.

Dora Hermes; Kai J. Miller; Mariska J. Vansteensel; Erik J. Aarnoutse; Frans S. S. Leijten; Nick F. Ramsey

The neurophysiological underpinnings of functional magnetic resonance imaging (fMRI) are not well understood. To understand the relationship between the fMRI blood oxygen level dependent (BOLD) signal and neurophysiology across large areas of cortex, we compared task related BOLD change during simple finger movement to brain surface electric potentials measured on a similar spatial scale using electrocorticography (ECoG). We found that spectral power increases in high frequencies (65–95 Hz), which have been related to local neuronal activity, colocalized with spatially focal BOLD peaks on primary sensorimotor areas. Independent of high frequencies, decreases in low frequency rhythms (<30 Hz), thought to reflect an aspect of cortical‐subcortical interaction, colocalized with weaker BOLD signal increase. A spatial regression analysis showed that there was a direct correlation between the amplitude of the task induced BOLD change on different areas of primary sensorimotor cortex and the amplitude of the high frequency change. Low frequency change explained an additional, different part of the spatial BOLD variance. Together, these spectral power changes explained a significant 36% of the spatial variance in the BOLD signal change (R2 = 0.36). These results suggest that BOLD signal change is largely induced by two separate neurophysiological mechanisms, one being spatially focal neuronal processing and the other spatially distributed low frequency rhythms. Hum Brain Mapp, 2011.


The Journal of Neuroscience | 2013

A Brain Area for Visual Numerals

Jennifer Shum; Dora Hermes; Brett L. Foster; Mohammad Dastjerdi; Vinitha Rangarajan; Jonathan Winawer; Kai J. Miller; Josef Parvizi

Is there a distinct area within the human visual system that has a preferential response to numerals, as there is for faces, words, or scenes? We addressed this question using intracranial electrophysiological recordings and observed a significantly higher response in the high-frequency broadband range (high γ, 65–150 Hz) to visually presented numerals, compared with morphologically similar (i.e., letters and false fonts) or semantically and phonologically similar stimuli (i.e., number words and non-number words). Anatomically, this preferential response was consistently localized in the inferior temporal gyrus and anterior to the temporo-occipital incisure. This region lies within or close to the fMRI signal-dropout zone produced by the nearby auditory canal and venous sinus artifacts, an observation that may account for negative findings in previous fMRI studies of preferential response to numerals. Because visual numerals are culturally dependent symbols that are only learned through education, our novel finding of anatomically localized preferential response to such symbols provides a new example of acquired category-specific responses in the human visual system.


NeuroImage | 2014

Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations

Kai J. Miller; Christopher J. Honey; Dora Hermes; Rajesh P. N. Rao; Marcel denNijs; Jeffrey G. Ojemann

We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naive decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with simple models of the dendritic integration of asynchronous local population firing. Because broadband spectral changes covary with diverse perceptual and behavioral states on the timescale of 20-50 ms, they provide a powerful and widely applicable experimental tool.


PLOS Computational Biology | 2012

Human Motor Cortical Activity Is Selectively Phase-Entrained on Underlying Rhythms

Kai J. Miller; Dora Hermes; Christopher J. Honey; Adam O. Hebb; Nick F. Ramsey; Robert T. Knight; Jeffrey G. Ojemann; Eberhard E. Fetz

The functional significance of electrical rhythms in the mammalian brain remains uncertain. In the motor cortex, the 12–20 Hz beta rhythm is known to transiently decrease in amplitude during movement, and to be altered in many motor diseases. Here we show that the activity of neuronal populations is phase-coupled with the beta rhythm on rapid timescales, and describe how the strength of this relation changes with movement. To investigate the relationship of the beta rhythm to neuronal dynamics, we measured local cortical activity using arrays of subdural electrocorticographic (ECoG) electrodes in human patients performing simple movement tasks. In addition to rhythmic brain processes, ECoG potentials also reveal a spectrally broadband motif that reflects the aggregate neural population activity beneath each electrode. During movement, the amplitude of this broadband motif follows the dynamics of individual fingers, with somatotopically specific responses for different fingers at different sites on the pre-central gyrus. The 12–20 Hz beta rhythm, in contrast, is widespread as well as spatially coherent within sulcal boundaries and decreases in amplitude across the pre- and post-central gyri in a diffuse manner that is not finger-specific. We find that the amplitude of this broadband motif is entrained on the phase of the beta rhythm, as well as rhythms at other frequencies, in peri-central cortex during fixation. During finger movement, the beta phase-entrainment is diminished or eliminated. We suggest that the beta rhythm may be more than a resting rhythm, and that this entrainment may reflect a suppressive mechanism for actively gating motor function.


Annals of Neurology | 2010

Brain–computer interfacing based on cognitive control

Mariska J. Vansteensel; Dora Hermes; Erik J. Aarnoutse; Martin G. Bleichner; Peter C. van Rijen; Frans S. S. Leijten; Nick F. Ramsey

Brain–computer interfaces (BCIs) translate deliberate intentions and associated changes in brain activity into action, thereby offering patients with severe paralysis an alternative means of communication with and control over their environment. Such systems are not available yet, partly due to the high performance standard that is required. A major challenge in the development of implantable BCIs is to identify cortical regions and related functions that an individual can reliably and consciously manipulate. Research predominantly focuses on the sensorimotor cortex, which can be activated by imagining motor actions. However, because this region may not provide an optimal solution to all patients, other neuronal networks need to be examined. Therefore, we investigated whether the cognitive control network can be used for BCI purposes. We also determined the feasibility of using functional magnetic resonance imaging (fMRI) for noninvasive localization of the cognitive control network.


Cerebral Cortex | 2015

Stimulus Dependence of Gamma Oscillations in Human Visual Cortex

Dora Hermes; Kai J. Miller; Brian A. Wandell; Jonathan Winawer

A striking feature of some field potential recordings in visual cortex is a rhythmic oscillation within the gamma band (30-80 Hz). These oscillations have been proposed to underlie computations in perception, attention, and information transmission. Recent studies of cortical field potentials, including human electrocorticography (ECoG), have emphasized another signal within the gamma band, a nonoscillatory, broadband signal, spanning 80-200 Hz. It remains unclear under what conditions gamma oscillations are elicited in visual cortex, whether they are necessary and ubiquitous in visual encoding, and what relationship they have to nonoscillatory, broadband field potentials. We demonstrate that ECoG responses in human visual cortex (V1/V2/V3) can include robust narrowband gamma oscillations, and that these oscillations are reliably elicited by some spatial contrast patterns (luminance gratings) but not by others (noise patterns and many natural images). The gamma oscillations can be conspicuous and robust, but because they are absent for many stimuli, which observers can see and recognize, the oscillations are not necessary for seeing. In contrast, all visual stimuli induced broadband spectral changes in ECoG responses. Asynchronous neural signals in visual cortex, reflected in the broadband ECoG response, can support transmission of information for perception and recognition in the absence of pronounced gamma oscillations.


The Journal of Neuroscience | 2014

Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception.

Vinitha Rangarajan; Dora Hermes; Brett L. Foster; Kevin S. Weiner; Corentin Jacques; Kalanit Grill-Spector; Josef Parvizi

Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception.


Frontiers in Human Neuroscience | 2010

Dynamic Modulation of Local Population Activity by Rhythm Phase in Human Occipital Cortex During a Visual Search Task

Kai J. Miller; Dora Hermes; Christopher J. Honey; Mohit Sharma; Rajesh P. N. Rao; Marcel den Nijs; Eberhard E. Fetz; Terrence J. Sejnowski; Adam O. Hebb; Jeffrey G. Ojemann; Scott Makeig; Eric C. Leuthardt

Brain rhythms are more than just passive phenomena in visual cortex. For the first time, we show that the physiology underlying brain rhythms actively suppresses and releases cortical areas on a second-to-second basis during visual processing. Furthermore, their influence is specific at the scale of individual gyri. We quantified the interaction between broadband spectral change and brain rhythms on a second-to-second basis in electrocorticographic (ECoG) measurement of brain surface potentials in five human subjects during a visual search task. Comparison of visual search epochs with a blank screen baseline revealed changes in the raw potential, the amplitude of rhythmic activity, and in the decoupled broadband spectral amplitude. We present new methods to characterize the intensity and preferred phase of coupling between broadband power and band-limited rhythms, and to estimate the magnitude of rhythm-to-broadband modulation on a trial-by-trial basis. These tools revealed numerous coupling motifs between the phase of low-frequency (δ, θ, α, β, and γ band) rhythms and the amplitude of broadband spectral change. In the θ and β ranges, the coupling of phase to broadband change is dynamic during visual processing, decreasing in some occipital areas and increasing in others, in a gyrally specific pattern. Finally, we demonstrate that the rhythms interact with one another across frequency ranges, and across cortical sites.

Collaboration


Dive into the Dora Hermes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge